
Best
Available

Copy

.,

muß w.m«w'T~mi^p^^mßl*^' mimniimi-*^m^*^~^^^m»mv' *vmw*m*l''"*"m' " ^'""'*■"'' - '' ii u iiiut ■■■ »ii.iuji

AD-786 721

COPILOT A MULTIPLE PROCESS APPROACH
TO INTERACTIVE PROGRAMMING SYSTEMS

Daniel Carl Swinehart

Stanford University

Prepared for:

Advanced Research Projects Agency

July 197 4

DISTRIBUTED BY:

mr
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151 1

_—. ■'—: - - -■■'——- — ■

11 '• ■

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-230

STAN-CS-74-412

00

COPILOT A MULTIPLE PROCESS APPROACH TO
INTERACTIVE PROGRAMMING SYSTEMS

BY

DANIEL CARL SWINEHART

SUPPORTED BY D D C

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

JULY 1974

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

1
I

•»■iii.

NATIONAl TFCHNICAL
INFORMATION SLRVICE

U S Oeparlmenf of rnmmprre
SorinRfieKi VA 22151

tmmi in ■ ■-

2-':

 I

P.IUI.I, III UW(« r—m ■"■"•■-1 »PWW!^——™. m um Jin M» i«

*- :A

..., .„.., _.,..,._.

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM'ttO

JULY 1971

COMPUTER SCIENCE DEPARTMENT REPORT
STAN-C.S-7t-4l2

COPILOT: A MULTIPLE PROCESS APPROACH TO
INTERACTIVE PROGRAMMING SYSTEMS

by
Daniel Carl Swnvhsit

ABSTRACT: An experimmial interactive system, COPILOT, is used as the concrete
vchirlo for testing and descnbing methods for adding multiple piocessing facilities to an
intemctive language environment

COPILOT allows Mie user to create, modify, investigate, and control programs written in
an Al&ol-like language, augmented for multiple piocessing. Although COPILOT \%
compiler based, many of our solutions could also he applied to an interpretive system.

Central to the design is the use of CRT displays to present programs, program data, an 1
system status. This continuous display of information in context allows the user to retain
comprehension of complex program environments, and to indicate the environments to U
affected by his commands.

I

COPILOT uses the multiple processing facilities tn its advantage to achieve a "rmi,
preemptive' kind of interactive control. The user's terminal is contmuouslv available loi
(umm.inds of any kind; program editing, vanible mquny, program contiol, etc..
indrprniiiiit nf the exerutKNi state of the processes he is controlling No process may
nml mi ally gain possession of the user''; input; the usei retains control at all times

The Miiphasis throiiK.hout is on improving the chaiactenstics of the interface between Ihc
usei ami the system.

I
I

^

This research was supported in part by the Advanced Research Projects Agency of the Office
of Defense under Contract No SD-185

The views and conclusions in this document are those of the author and should not IT

interpreted as necessarily representing the official policies, either expressed or implied, of (he
Advanced Research Projects Agency or the U.S. Government

Reproduced in the USA. Available from the National Technical Information Service,
Springfield, Virginia 22151.

Reproduced from
best available copy.

/'

mmmm -mm MM .**■ ■ "'-■ •*•- ---■..-■■ ih^ ...Mihr,

J m 111" m-im!imm^mr> ^ —^PW-W-T IPWItffiPHRÜlliP i< » -

\

ACKNOWLEDGMENTS

I would like to express spinal appreciation to my dissertation adviser, Professor Jerry

Feldman, for his guidance, and for his unfailing confidence in me, even when my own

was waning. I am indebted to Dr. Jim Mitchell, who off'red immeasurable assistance

w:th the technical problems, through many conversations and several thorough

readings Professor Robert Floyd contributed helpful, detailed suggestions for

improving the style and clarity of this work, as well as several key ideas.

I would like particularly to thank these colleagues who read the dr, fts, even though

they didn't have to: Alan Kay, Jim Low, Andy Moorer, Hanan Sa net, Dave Smith,

Bob Sproull, Larry Tesler, and Russell Taylor.

The publication of this document would not have been possible without the support of

the Stanford Artificial Intelligence Laboratory; nor could I have done without the aid

of Larry Tesler, who provided the publication system, and Brian Harvey, who helped

me make it work.

My deepest gratitude is reserved for my wife, Ann, who always understood why I was

gone, and who will have to put up with me now that I am back.

I in

- - I -■-- >_

•PU«»!, •>•••<«>»« ^IPPPIPII I II ■PHIU i ii n.\inm^m^m**m,"m'* "r^^mmvmmm ^mmmimmm'm."" mPWUJJWI

TABLE OF CONTENTS

chapter

1 INTRODUCTION

I.A THE PROBLEM

IB COPILOT

l.C A BRIEF OUTLINE

2 HUMAN INTERACTIVE CHARACTERISTICS

2.A THE BEHAVIOR MATCH

2.B SCOPE OF APPLICATION

2.C SPECIFIC ATTRIBUTES

Multiple Activities

Single Language

Non-PreCmption

Response Time

Minimal (output) Modes

Maximum (input) Context

Access to Information

Non-symbolic operations

2.D THE BEHAVIOR MATCH REVISITED

page

2

2

3

7

7

8

9

9

10

11

11

12

13

J

]

.1

.;

]

]

.i

]

J

]

:i

]

j

■j

3 A SURVEY OF REPRESENTATIVE IIITERACTIVE PROGRAMMING SYSTEMS

IV

■ - ■ - . - -.---

^^^^y»m..l.^....,l..iIM,.Hw.p. J ■l|llll^PPMPWl^|j|py^.l4IJII^IIU -^WIP^WW^ *' f-' "»a.

I
3.A BATCH COMPUTING SYSTEMS

3.B EARLY INTERACTIVE SYSTEMS (FSA/IPS)

Attribute Analysis

Representative Systems

3.C EARLY DEDICATED-LANGUAGE SYSTEMS(FSA/IPS)

Attribute Analysis

Representative Systems

3.D REDUCED MODE SYSTEMS (FSA/IPS/RED)

Attribute Analysis

Representative Systems

3.E NESTED USER SYSTEMS (LPDA/IPS)

Attribute Analysis

Representative Systems

3.F ADVANCED IPS SYSTEMS

BEN LISP

SLICE

ECL

FLEX

FLEX Attribute Analysis

3,G ATTRIBUTE SUMMARY

4 DESIGN OF COPILOT

4.A ACHIEVING THE BEHAVIOR MATCH

Use of Multiple Processes

Use of Displays

Single Language

Abbreviation

v

16

17

20

21

21

23

23

23

26

26

27

30

30

31

31

32

33

33

34

36

37

S7

38

40

40

■ --

a

i.E ADDITIONAL DESIGN DECISIONS

Compiler-Oriented

Static Block Structure

Emphasis on Large Systems

No Automatic Program Composition

4.C AN OVERVIEW OF THE COPILOT SYSTEM

The Environment

Basic Dialogue

A glimpse of Non-preömption

4.D ATTRIBUTE ANALYSIS OF COPILOT 65

5 THE COPILOT SYSTEM: A USER-LEVEL DESCRIPTION

5.A BAf.lC SYSTEM STRUCTURE TERMINOLOGY 67

Screens 68

Regions 68

Scenes 69

Scene Types 69

5.B CONTEXT SCENES AS EXTERNAL INFORMATION STRUCTURES 70

Information Structure Models 70

The Contour Model 70

The COPILOT Context Scenes 73

The Snapshot Requirement 73

COPILOT Context Scene Types 73

VI

.1
41 -
42

43 .i
44

45
_ •

»•

45

46 .;

51 — *
57 i

J

I

r

■*I«M«IIII ii --M,, i iiii«ir- '- ■ .—. ... -.-- - ^■■.

mmtmmmmmmmimi** ^i.M«»».« iiinwiiii.i>iviiui.ii.iiJiRuuip* i.. IM HI uuMmii iA m mw<mmmmmfmi^mmmmimmm

5.C PROGRAM SCENES - THE PROGRAM COMPONENT

The MISLE Language

The Basic Featur.s of MISLE

Semantics of Extensions

Processes

Special Features

Program Scene Organization

The Instruction Point Portion of the Control Component

b.D DATA SCENES - THE STATIC DATA COMPONENT

Data Language Syntax

Semantics, Pragmatics

Data Scene Organization

The Data Language as an Input Facility

The Environment Point Portion of the Control Component

5.E DYNAMIC SCENES - THE DYNAMIC DATA COMPONENT

The Context Point

Adequacy of Scenes as External Information Structures

5.F ST/ T SCENE - PROCESS STATUS

5.G USER SCENES

5H REGIONS

Regions for Data Scents - Special Problems and Provisions

6 THE CONTROL ALGORITHM

6.A SYSTEM STRUCTURE

The UCP - User Control Process

Crucial Primitives

74

74

75

77

77

79

80

83

83

84

84

?6
R7

87

88

88

89

91

91

92

94

96

96

vii

■MM»

wmm*mmi^^*''*>-'m**«i* ' ' II.IIWU«IPPäWW»"PI»-I »i i «^PW"wi^wi^MSipp«pm —— " ' ■ ■■

6.B THE USER LOOP

Algorithm A - Basic

Algorithm B - the Expand Routine

Algorithm C - Using the UCP

Algorithm D - Selective Interpretation

6.C THE POST PROCESS

Display of Users' Scenes

7 COPILOT TERMINAL PRIMITIVES

7.A USER-ACCESSIBLE STRUCTURES

Access Primitives

7.B GLOBAL STRUCTURE VARIABLES

7.C THE COPILOT TERMINAL PRIMITIVES

Notation

7.D SEMANTICS OF SPECIAL STATEMENTS

Variable Query (Data Display)

Breakpoints

Temporary Statements

7.E CONCLUSIONS

8 IMPLEMENTATION CONSIDERATIONS

8.A TIERS

Tier Equivalence

Inter-Tier Connections

Tier Fidelity

Tiers in other Systems

viii

97

97

100

101

102

103

104

105

106

107

108

109

126

126

126

127

128

129

129

131

131

132

.1
11

:;

■

—.

uiji.1 ■»uiin» i ii »uik «1111.11 ii iii i iMitiinj mi «i^naRw «iiwwa ■ m ■ n i

WÜRSi»'

8.B SCENE-TIER RELATIONSHIP

Permanent Scene Representation

132

133

8.C COPILOT TIERS

Text Tier

Token Tier

Tree Tier

The Symbol Table

Other Trees

Code Tier

Synchronization

136

139

139

141

143

145

1*5

146

i

I

8.D SELECTIVE EFFICIENCY

Space Efficiency

8.E PARSING AND COMPILING

Parsing Methods

Detection of Increments

Timing of Parse Events

Process Structure

The Parse Process

Compiling: When and How

Mocifymg Active Code

Compiling Temporary Statements

151

152

156

156

157

159

160

161

162

163

164

9 SHORT SUBJECTS

9.A ADDITIONAL COPILOT SUBJECTS

User Programs in the System Environment- Assistant Procedures

Display of (unnarm -t) Expressions

Operations on the UCP Scene

165

165

166

167

IX

 ,

«pppmimTu. .»winipiiipwPüPBWWfw^wp^PPwp w ""■ I^*.JIW!!B|PP^P^«"WIWIW<"PPWW^UII«III» »I. iii^!.««ww»i«Liyi«.iiMi ■ i ijiiniiiiiu.iiiiiiiuini

.1

9.B PROBLEMS

A UCP Scene Problem

Type Ahead Problems

Data Scene Flickering

Data Monitoring

Restoration of Active Context

9.C EXTENSIONS

Envircnmem Modification by DYNA Scene Editing

Scene Branching

Modifying the User Loop

Display of Structured Data

Error Messages

Text Scene Monitoring

Program Communication

A Final Modification to the User Loop

9.D SUMMARY

APPENDIX A SYNTAX CONVENTIONS

BIBLIOGRAPHY

B
169 0
169

169

170
]

in
172 .;

173]
173

174

178
]

178

181 0
181

183 I]
184

186

187

APPENDIX B ASSOCIATIVE FACILITIES (LEAP) OF THE SAIL LANGUAGE 189

194

;i

D
::

,. ^......j-.i.— ■■■■■■*■ . -... — --.,M-^^....—„ . . .^■^.-^.kt-.

1. -,"11 ' l> 1 I — ' "■' '- "•■ >' ■'■.' " ■'■ ■

FIGURES

figure page

2-1 Thoughts to Action

3-1 FSA/IS Behavior of DEC TOPS-10 Executive

3-2 FSA/IPS Behavior of BASIC Terminal Interface

3-3 FSA/IPS/RED Behavior of JOSS Terminal Interface

3-4 DPDA/IPS Behavior of LCC Terminal Interface

4-1 Typical COPILOT Scenes and Regions (screen 1)

4-2 Typical COPILOT Scenes and Regions (screen 2)

4-3 The Stanford AI Project Keyboard

4-4 Simple Editing and Execution Control (part 1)

4-5 Simple Editing and Execution Control (part 2)

4-6 Control of Multiple Processes (part 1)

4-7 Control of Multiple Processes (part 2)

4-8 Control of Multiple Processes (part 3)

4-9 Non-Preemp'ive Operation (part 1)

4-10 Non-Pre^mpi ve Operation (part 2)

4-11 Non-Preemptive Operation (part 3)

5-1 The Contour Model Representation for an Algorithm

5-2 PROG Scene Linkage

6-1 Global COPILOT Structure

8-1 (Inadequate) View of Scene/Tier Structures

8-2 Interconnected COPILOT Scenes

8-3 Overall View of COPILOT Tier Structures (part 1)

8-4 Overall View of COPILOT Tier Structures (part 2)

8-5 COPILOT Program Text and Token Tiers

8-6 COPILOT Program Tree Tier

8-7 COPILOT Symbol Table Organization

8-8 COPILOT Program and Data Code T'ers

8-9 Selective Connectivity

8-10 Proposed Memory Organization for COPILOT Implemented in

8-11 Proposed Memory Organization for COPILO" Implemented in

8-12 Additional Token Tier Structure to Record Source Changes

XI

MULTICS

TENEX

16

19

23

26

30

48

49

51

56

57

59

60

61

63

64

65

73

83

94

135

136

138

139

141

143

145

151

152

155

156

159

W^MiMl ^-

im*mmmmi,mwm»m i i i ■■ na n fBir~™*^9**mßiimmimnm^l****™ ■'"'■" imtinn i ttmr mm vmm avnwpiMPV^aHmpVHPMnBqi

:i
9-1 User's View of Scene Branching

9-2 Efficient Scene Branch Implementation (Token, Tree)

9-3 Efficient Scene Branch Implementation (Code)

9-4 Possible Scene for Displaying Array Sections

176

177

178

181 .i

]

.:

:i

:;

XII i

- -

rmmmmwm^m^^fm* •wwn -^w IIBIIIIIIII i III..».«.u- ■

table

3-»

4-1

5-1

5-2

5-3

6-1

7-1

7-2

7-3

TABLES

P«ge

Behavior Match Attribute Summary

Commands Used in Chapter 4 Examples

Display Terminology

COPILOT Process Control Primitives

Copilot Process Execution States

Shortcomings of User Loop Algorithm A

Structure Access (conversion) Primitives

Global IPS Structure Variables

COPILOT Command Notation Conventions

53

68

78

90

99

107

108

110

xm

■ -

. ri .., ,,~ . ,». . ., -— ■ Wl|ll< ^ ^»wwwp« 1 ■- '" "V »HWIHIP^WIW*-

MRfll

ABSTRACT

The addition of multiple processing facilities to a language used in an interactive computing

environment requires new techniques This dissertation presents one approach, emphasizing

the characteristics of the interfr.ce betv.^-. the user and the system.

We have designed an experimental interactive programming system, COPILOT, as the

concrete vehicle for testing and describing our methods. COPILOT allows the user to create,

modify, investigate, and control programs written in an Mgol-like language, which has beei

augmented with facilities for multiple processing. Although COPILOT is compiler-based,

many of our solutions could also be applied to an interpretive system.

Central to the design is the use of CRT displays to present programs, program data, and

system status. This continuous display of information in context allows the user to retain

comprehension of complex program environments, and to indicate the environments to be

affected by his commands

COPILOT uses the multiple processing facilities to its advantage to achieve a kind of

interactive control winch we have termed "non-preemptive". The user's terminal is

continuously available for commands of any kind; program editing, variable inquiry,

program control, etc, independent of the execution state of the processes he is controlling.

No process may unilaterally gam possession of the user's input; the user retains control at all

times

Commands in COPILOT arc expressed as statements in the programming language. This

single language policy adds consistency to the system, and permits the user to construct

procedures for the execution of repetitive or complex command sequences. An abbreviation

facility is provided for the most common terminal operations, for convenience and speed.

We have attempted in this thesis to extend the facilities of interactive programming systems

in response to developments in language design and information display technology. The

resultant system provides an interface which, we think, is better matched to the interactive

needs of its user than are its predecessors.

I XIV

- ^mam i —— , „.

I •■PPPW^"l**«"<WW*iipiPHP«ü»»WPWWP<"!P ,!■■■■ IIIJII » >mnm iijrjnn iviiwiiauiin ■■IIMIWIPI

CHAPTER 1

INTRODUCTION

Interactive, or conversational, computing owes its existence to the development of

multiprograniming. or multiple processing, facilities. The scarcity and expense of

computing equipment pre' ented direct, convenient user interaction with the programs he

wrote until a way was found for several people to share the resources of a computer system

simultaneously

A process, as we will use it. is 'an activity comprised of a time-ordered sequence of actions"

[56] The behavior of a process does not depend on the activity of other processes- except,

perhaps, for the time and other resources it requires to execute- unless such interaction is

intended We may thert/ore treat a process as if it had sole use of its own processor

(computer or other active agent). Processes may communicate with each other, through

messages or shared data, or they may operate independently.

This multiple process activity can be simulated by a single processor, under control of the

appropriate operating system. In such a multiprogramming system, use of the processor

(and other resources) is allocated among the competing processes, providing for each a virtual

processor somewhat slower than the real one. A time sharing system is a multiprogramming

system to which terminal devices (e.g., teletypes or display terminals) have been connected,

allowing users to communicate directly with active processes within the system.

Joss [7], Basic [29). LCC [45]. APL [26]. and BBN-Lisp [53] are examples of

language systems which are designed to operate in a time shai ?d environment: they are all

Interactive Programming Systems (IPSs) (*) They all allow a user to create a program "on

line"; to execute it, examine its state, and modify its definition (to "debug" it); and to supply it

with requested data In the current versions of these systems, the system algorithms and data,

along with those created by the user, form a single process within the operating system.

(*) We will examine these and other notable Interactive Programming Systems in Chapter 3.
I

1

iiwvt *m>immiiwim*ii^w™m^fmmmmmmmmmmimmim. ■ ''•'«''iiiniiiwimimrmmmmmiumvwijuvi^m^mmimmmmmmi^mmr-'mmmmimimwiif

1 A THE PROBLEM

IB COPILOT

.:

A time sharing system can use process structures to provide a totally independent operating

enviionment for each of its users. However, when processes are allowed to communicate and

to cooperate with each other, they can become a useful facility for the performance of a

single project The Simula 67 document [14] contains several simple examples of

cctfperating processes More recently, other operating systems and language systems have

begun providing their users direct access to multiple processing facilities.

Inherent in an Interactive Programming System design is a specif.cation of the role the user

plays in its operation: the appearance of the interlace between the user and the system The

more sophisticated f!f the IPSs mentioned above (those which implement the more powerful

*nd complex langua es) define a user role which cannot easily be extended to handle the

multiple simultaneous control and data environments of a language system which supports

multiple processes We will present arguments to support this contention

In this dissertation we will address the problem of building Interactive Programming Systems

which can contend with multiple proceüing: environments. Instead of treating this endeavor

as a burden, we will look for ways to use fhe$e facilities to improve the performance of the

system, and of the user
.:

;; The bulk of this thesis is a description of an experimental IPS, COPILOT, which we have

designed as theVoncrete vehicle for testing and describing our methods. COPILOT allows

the user to createVnodify, investigate, and control programs written in an Algol-like language,

which has been augment d with facilities for multiple processing Although COPILOT is

compiler-based, many of our solutions could also be applied to an interpretive system.

.:

D
Central to the design is the use of CRT displays to present programs, program data, and

system status This continuous display of information with some associated context helps the

user to retain comprehension of complex program environments, and to indicate the

environments to be affected by his commands

J

■ - ■■ — ——

PPW ' wn"*.'. in^wmi^*m*i^^m^*^' m<««Mvpppm^^n»mw«iiijH'.im ■w>9nM«tmM«Ni«^^pp^^' -»>

1

1
1
1

I
I
I
il
I

i

i

i

COPILOT uses the multiple processing facilities to its advantage, to achieve a k*nd of

interactive control which we call "non-pre#mptive". The user's terminal is continuously

available for corT,.^ands of any kind: program editing, variable inquiry, program control, etc.,

independent of the execution state of the processes he is controlling. Nc process may

unilaterally gain possession of the user's input: the user retains control at all times.

Commands in COPILOT are expiessed as MISLE language statements. This single

language policy adds consistency to the system, and permits the user to construct procedures

for the execution of repetitive ot complex command sequences. A top-level abbreviation

facility is provided for the most common terminal operations.

The role of the COPILOT user is that of a global observer and controller, with equal access

to all his program and data environments, subject only to protection restrictions imposed by

the operating system. We will demonstrate that this view is substantially different from the

more local focus provided by the typical single process IPS.

l.C. A BRIEF OUTLINE

The early chapters of his dissertation establr a basis for the study, defining our goals

based on observed needs. A survey of existing IPSs follows, provided as a basis for

comparison, and to indicate the debt we owe to our predecessors.

Chapter 4 is an overview of the COPILO" desgn. After describing the basic facilities of

the system, emphasizing the achievement r. the stated goals, we present a detailed example of

system operation The reader interested in system design may choose to read this chapter

first; the references to earlier chapters should not interfere with this procedure.

Subsequent chapters provide detailed user-level descriptions of COPILOT, giving special

attention to the facilities for multiple processing, and to our reliance on the use of display

devices to enhance these facilities.

We have limited implementation considerations to a brief chapter which concentrates on the

structures we have created for representing programs at Jifferenr lev-Is, or "Tiers", and the

means for maintaining the necessary relationships betweei Tiers.

— ■'-^- ._-

fmi in wiiBi.tW'iiipiLIPHMJJ," "»mm m\m i n j i, n.jiiii^i^^^ Hf^^Wfr^vmirrmr'^mmmmm^mif mmmmmmmmmmm ■^WW™«!» VVU^UJ^IHI

The final chapter is a compendium of miscellaneous topics, unsolved problems, and

suggestions for further research.

.1

on

.i

2
1

i

J

m^^^mmm
■ -■-■-

iip. mmimm'r^^m^m nmmm \mw *»mKmvmmm<imtiimm™"««J""iw vmm*m**^mm'^^*

I
1
1
I
i
I
I
i
I
I
I
I
I
I
I
I
I
I

CH\PTER 2

HUMAN INTERACTIVE CHARACTERISTICS

2.A THE BEHAVIOR MATCH

An Interactive computer System (IS) is the hardware and software which allows composition,

testing, debugging, and operation of computer programs, enhancing the "ability of the user to

initiate, interrupt, and generally interject himself into the control of the system" [44]. Ir

practice, an IS consists of a user conrole (keyboard and printer), and the set of program and

interactive features which are available to it. operating on a ciigital computer, which is

usually time-shared. An Interactive Programming System (IPS) is an IS incoiporating a

single programming language for all programming and program control.

Most recent emphases in IPS design (f) have been on improved language design, improved

debugging facilities, and on the development of "single language" systems, which extend the

programming language to include the interactive facilities. Mitchell's thesis [44], itself a

significant contribution to Interactive Progr imming Systems, contains as well a good survey

of the leading examples of cuirent systems. His emphasis Is is on language design and on

implementation considerations (flexibility, efficiency, and portability).

The emphasis of this disseitation is on the user-system interface. It is our desire to provide a

convenient, pleasant, intuitive interface between the user and the IPS. We intend to do this

by providing a system whose behavior matches as closely as possible the relevant

characteristics of the people who use it. Our thesis is that such a system can measurably

increase user performance.

There is an intriguing, if not terribly accurate, metaphor to be found in electronic lore: the

"impedance match". For maximum efficiency (minimum wasted energy), the impedance of an

output from one device must cusely match the input impedance of any device to which it is

connected. If the impedance mismatch is too great, the connection will fail to perform

successfully at all. We will call our IPS analogue a "Behavior Match" - a term which we

shall attempt to justify.

(t) Examples are ECL, LCC, and BBN Lisp, all of which we will discuss in the survey of Chapter
3.

mm ■MHM*

 w. i imifrntt^m^t^mmjiwi' m '^mmmmmmmmmmmmm '"""■■—" »i^«-

To emphasize our conviction of the importance of this Behavior Match concept, and the

necessity for some terminology to express it, we offer these informal definitions and terms:

The Behavior of an entity is that set of processes which determine the manner in which

information can be presented to it, apd is presented by it.

A Behavior Match has been achieved when the "behavior" of a system complements the

behavior of its user, optimizing his performance.

These definitions are clearly subjective, containing as well enough undefined terms and vague

semantics to preclude their use for any measurement purposes. Although we hope to clarify

these definitions somewhat in the sequel, their major purpose is to provide an intuitive basis

for cliscussmn.

The Behavior Match diverges from the impedance match example in that user and system

behavior need not be identical, or even similar; they need only be "complementary." However,

we shall show that the similarity is stronger than one might expect.

At the risk of overloading the "impedance match' analogy, let us point out one additional

similarity, the impedance match between communicating devices need only exist at the

interface between them. It is possible to design circuits which isoiate the main body of a

device from its interface, allowing it to employ impedances (and other related characteristics)

which are internally convenient. Similarly, many of the internal details of an efficient,

powerful IPS must be hidden from the user, since their functions (e.g. compilation, data

conversion) are not involved in the problem-solving efforts of the user, nor are their results

(binary machine instructions, etc.) likely to be meaningful to him.

2.B. SCOPE OF APPLICATION

The bulk of this dissertation is dedicated to the design of system interface characteristics

which will improve the interactive behavior match between system and user. Just as the

interface characteristics ore chooses for an electronic device place certain constraints on the

internal device design, our IPS interface decisions will have an effect on all aspects of system

design and implementation. However, we should not let our human engineering decisions

.!

.i

0
J

;;

"i
J

Mi HUM -- -^ --

n tmmnmit^mmmiFm m-mw^vm^m^mmmmm*!™* ^PW* "WPW • »>«mim,\

I

unduly reduce our range of options in such fundamental areas as: the selection of a

programming language; the choice of execution methods (compiled or interpreted); whether

the system is intended for the creation of large, "production" programs, or for smaller,

"instructional" ones; or whether it is intended chiefly for novice or expert users. We hope to

show that the approaches to IPS design which we advocate apply to systems which vary

widely in these parameters.

We will present in the course of the dissertation an IPS. COPILOT, as a concrete vehicle for

discussing methods for attaining I good Behavior Match. Because it is a concrete system.

COPILOT exhibits certain choices from the above parameter spectra. Indeed, we think we

have made the mire difficult, psrhaps less inherently flexible choice in nearly every case.

This is true in part because of the particular needs of the environment for which we have

designed the system, in part because of a desire to demonstrate the versatility limits of our

methods. Nevertheless, particularly in these initial chapters, we will attempt to indicate those

areas where choices can be made, and those which are heavily constrained by our solutions.

2.C. SPECIFIC ATTRIBUTES

We have chosen for study a set of hi man interactive attributes which, we believe, an IPS

should accommodate in order to achie/e a behavior match. This set of characteristics, which

follows, was derived in two ways: some are characteristics which we have observed, and

which influenci'd our design - a priori observations. The rest are. admittedly, a posteriori

observations, attributes we have noticed which are fortunate in light of what our methods

provide This fact should not affect their validity

We do not claim to have isolated all relevant interactive attributes. We have concentrated on

these behavioral aspects which relate to "process" and "information transfer". Additionally,

these conjectures will have to stand as the opinions of the author- based on his observations

of the way he and others use interactive computer systems- used to justify and guide the

design of the COPILOT system's behavior

2.C1 Multiple Activities

The activity of someone engaged in the solution of an intellectual problem can be model'ed

- - ■ ■■- ^,.wJJ.fe^-^^

m MI ii »■ Uli HWUW-IMLMI i .1— **~mmmimß. —i—i
11 * ii1"' '^ ■ > >

.i

as a single processor executing a set of coordinated sequential processes (coroutines), in ihe

sense that:

1) He is likely to shift his attention rapidly between different "processes." His reason for
doing this may be generated internally (e.g. boredom, inspiration) or externally (the
phone i ings; or perhaps the part hasn't come in yet).

2) He may retain enough "state" information about an abandoned process to return to it
again in time, or he may abandon it entirely.

3) If the alternative is excessive unproductive waiting, he will often turn ':ii: attention to
some unrelated subject (the processes need not all cooperate), returning to the task at
hand when it is again possible

4) He can carry some state information concerning a previous activity in i the next, often
correlating the two in order to understand complex relations. After all, he is presumably
pursuing some overall goal

5) Although we have not modelled his internal behavior as true parallel processes (we give
him credit for smgle-mindedriess), he can make use of several concurrent external
operations (stove burners, machines, computer programs, or whatever), as long as they
do not all require constant monitoring.

6) He seldom operates very recursively, or even properly nests operations- the above
coroutine-like model is a more accurate one than a simpler recursive model.

2.C2 Single Language

Symbolic communications between people (and between a person and his later self, for that

matter) are primarily conducted by means of natural language. The same language base is

used for all areas of endeavor, although specialized lexicons (seldom specialized grammars)

form dialects for specific topics. All necessary symbolic activities are possible in a natural

language

For efficiency and brevity, people have added to their communication abilities in two major

ways.

I) through formal languages (eg. mathematics) which, though not contained in the base
language, nonetheless have a (usually cumbersome) mapping into it.

m*mm — ..,. .. .,..■.^J.^...J-.^..

1 " ""«p Pi "■■ mmmmmmmmmm ■ i»"1" MPPHM^

2) through acronyms, abbreviations, and possibly non-grammatical colloquialisms, often
understood by only a srrall segment of the population ("far out!"). These artifacts clearly
m?p (though not always precisely) into grammatical forms in the base language.

Providing good symbolic communication between the user and his system wil. be a major

goal of this work. We believe that an IPS with a single input language, encompassing all

system commands, can enhance this communicaiion. We share an emphasis on the

importance of the single language idea with most IPS designers.

2.C3 Non-Pre^iiiption

A request for one's services is not always granted instantly. In fact, it is sometimes not

granted at all. At any rate, having noticed such a request, one may respond to it

immediately, queue it temporarily until some other task is complete, or ignore it entirely. He

is not automatically preempted by a "service request"; he can continue what he is doing, or

go on to something else entirely; nor must he take care of things in a fixed order.

This non-preemptive pattern is often thwarted at the user terminal connected to a modern

IPS, Much of our attention will be devoted to correcting the situation.

2.C4 Response Time

In contrast, when one reques's a service, he would lue it to be handled at once. We would

like to distinguish between the time required to complete a request, which we call completion

time, and a potentially different interval, which we call response time: the time delay, after

submission one request, until that request is acknowledged, and another may be submitted.

If there is but one agent for execution of requests, these two quantities will probably be the

same However, in an environment which supports multiple activities, successive requests

may call for the initiation of concurrent activities, or they may terminate previous ones. If

such activities are possible, then, in order to make maximum use of the concurrent facilities,

the response time should be short, independent of the completion time. (In our experience,

this time should be short compared to the time required to make the request, and should

seldom exceed one or two seconds.) Miller [41] has studied computer system response,

determining empirically, for a variety ol situations, what kinds of delays people will tolerate.

These times range from a second or two, in highly interactive situations, to fifteen seconds or

9

r

■ ■ - ----"■■'■'■■Mft-ü

mm

_ i M

11 ' "■ wmm** m* 11 ' mmmmm**mmimmm

more for complex requests. Miller's report does not make our distinction between completion

time and response time. However, in most of the situations he cites in which people will

tolerate only short delays, it is rapid response which thev seem to be seeking.

Simon, in [51], studied a related time interval, which he called the "minimum human

response time". This is the smallest "time slice" which one can efficiently use to work on a

task, particularly ir* .ie context of waiting for some possibly unrelated activity to complete.

In Simon's experience, this time is approximately ten minutes. We do not dispute it, but we

do believe that the "minimum human response time" could be reduced, if it were easier to

establish the context necessary to switch to a new task. In a computing environment, this

requires a system which is both non-preömptive and responsive.

To summarize, people want to schedule requests for their services (output), but to obtain

rapid UtMlUon to their own requests (input). This double standard is not always possible in

dealingi wich other people, but we can try to optimize it in an IPS.

.:

!

2.C5 Minimal (output) Modes

This topic introduces another input/output double standard. People are capable of

understanding stimuli which are context-sensif.ve: whose meaning depends on the

environment, or context, in which they are presented. English itself is internally context-

sensitive, although normally only in a quite localized fashion- paragraphs can generally

stand alone.

In general, we think it is desirable to reduce the context-sensitivity of what one must say

(output) by reducing the number of "states", or "modes", which impose different

interpretations on his communications. The single-language criterion also aids us here: a

sentence, especially one intended to convey information unambiguously, should always "mean"

the same thing. This cannot be true if disjoint (or even worse, partialiv riisjomt) languages

are provided for different purposes, since in the latter case a "mode" must be established to

determine which language to look for.

We do not mean to imply that the same results will obtain, no matter what the situation (or

state), when a jiven utterance is uttered, or when a given command is typed. There are

environmental conditions which influence the interpretation of communications. This context

is usually implicit, however, and need not be included in the message.

10

'I
]

i

■I

" ^~^.. ,..
idwib

II "Ml. I. w^rm^m^m •• m,u.m immw*^mm*m^,, n ill

We do not even intend that every statement be meaningful in every instance. Clearly, there

are sentences in nearly any language which are senseless, impossible, or merely silly under

some conditions. However, normally one can at least understand such a sentence, to the

extent that he can respond that it is senseless, silly, or impossible- and why. We would like

to preserve this behavior

We will, therefore, require of our non-preemptive, single language IPS. that it must allow a

user to express anything in that language, at any time- even if it is meaningless In context-

a system without excessive "modes"

2.C6 Maximum (input) Context

While one prefers to supply as little explicit contextual information as possible when

conveying information (output), one absorbs information (input) most readily when the

environment in which it is presented is as completely described as possible The more one

knows about a situation, the more capable he is of handling his part in it. Our goal should

be to provide as rich a context as possible, without including irrelevant information which

could obscure understanding. Further, it is best if this information is continually present,

continually up to date

When it is possible, we think that contextual information is best presented visually. This

sort of presentation can be made to satisfy the "continuously accurate" requirement, without

flooding our sensory channels- particularly because visual input also satisfies our non-

preemptive requirement- one need not look at everything all the time, and in fact can select

what to look at. and when to look at it.

2.C7 Access to Information

This topic ii closely related n the previous one. which requires that the available

information be presented as completely and coherently as possible. Now we wish to require,

in addition, that as much informativ as possible be available (accessible). One is clearly

more able to deal with a situation or cbject when all its components are accessible (to MC and.

hopefully, to change) than when he -.nust treat it as a "black box" (or perhaps "gray box").

II

■ -

i*W"WPP^w»^w""»-»' ''■■^*mmmm^*wmm***^ii'm» ' •••ml^^mm^gm^^mmmu i , » « ,m,mi, ^^^^^m

Having made the distinction between symbolic and "manipulative" operations, we would like

to sotten it somewhat. Although we do not normally do it, we can describe nearly any action

in words there is a way to map a given action into an "equivalent" symbolic form. We will

find this duality very useful in the sequel.

12

.1

.1
2.C8 Non-symbolic operations

Most of the topics we have discussed have dealt with symbolic terms; with language, its uses

and effects But a remarkable number of things people do are not (at least at the conscious

"interface") expressed symbolically at all, they are instead "manipulative" activities. We affect

things directly by moving them; we sense them directly by touch, sight or smell.

.;

As an example, after one has become experienced at driving a car, he is seldom aware of

turning the wheel or manipulating pedals; instead, he turns the car, speeds up, or slows

down- another example of levels of internal mapping which involve intermediaries at other

than conscious levels. Perhaps a better example is the playing of a musical instrument: one

does not (except when learning something difficult) think in terms of plucking strings,

pushing keys, or blowing air. He thinks in terms of producing notes, or even melodic

phrases, of the desired pitches, amplitudes, durations, and tonal quality.

Examples of these operations for a computer terminal might be functions performed by a

single keystroke, perhaps qualified with "control key" modification, or by light pens, function

kp-boards, etc. The conscious mind is aware only of their effect. This feeling applies

especially to those operations which have an immediate and visible effect- for instance, the

movement of cursors or the deletion or movement of text on a display screen.

What we are advocating here is that the way in which such repetitive operations have to be

performed be made simple enough that one thinks of them (while doing them) only in terms i

of their efff :t. In this way they tend to lose any symbolic meaning and to become practically U

bodily extensions.

!

mm MHMHa — ■ ■—

»■Ill.l. ...I.». ■■■ M,..,!.. ■^il.,^.. •mmmmmmmmm

i

I
2
I
:

:

i

2.D THE BEHAVIOR MATCH REVISITED

■»^M^have attenipted in the preceding section to indicate some characteristics of the IPS user

which the IPS must "compbment" to achieve an acceptable "Behavior Match". Before we

proceed to an analysis of the success of previous systems in this regard, we should attempt to

clarify what we mean by "complementary" behavior (recall the definition of Behavior Match

in Section 2.A).

Whatever the means of communication, the user does not really "do" any of the things he

requests: the computer does them, under the control of the interface routines of the IPS.

Thus before he can communicate a message to his system, he must translate that vhought,

using his own internal model of this interface, into the series of symbols which will

accomplish the transmission.

This internal model must adequately represent the real thing, given the low tolerance of most

language systems for syntactic errors ($). In this sense the Behavior of model and system

must be quite similar; i.e., their Behavior must match precisely. What we wish to achieve, in

these terms, is a system which allows natural, intuitive, and convenient translation from the

original thought to the model.

(t) Teitolman's DWIM system for BBN LISP [53] (see Section 3.F) is intended to reduce the
necessity for such precision by defecting and correcting simple errors (mismatches). We have
not treated error detection, correction, or minimization in this treatise, although in Section
9 C5 we have attempted to indicate how our non-preemptive Methods can be used to soften
the effect of errors.

13

-■- - ^-

m> ww • -■""ll" ' ' "■ ■"■l i ■ HI i ^iwpp^aiHppnnpmMü^gmii "^^wwwuiii" u" »i« i '~*i^mmmF*mm

5

a

i
UJ
Q.

 A
1

M
Ui

>- M
— UJ O

ü B
1-
(rt

b. XJ

ujj?
-IHS

M
O

D
E

S
Y

S

IN
T

E
I

«

S z
IT 0

UJ
o

_ V»

zzH
Jtu0
Z50

a

I o
»-
<
2

o
> <
I

B
u.
I-
z
UJ
_J

>

o
UJ

UJ
(0

h-

2

.i

.:

:

.1

.i

Figure 2-1. Thought» to Action

H

mpw^wwuwwprwfw^ WW^B»«* «T^wrJi i ■ ■ 111 JIIHIJKII III IJIPW*' iW» 1« III 11 IM Uli 111 M1*-"11 immmimipmm

CHAPTER 3

A SURVEY OF REPRESENTATIVE INTERACTIVE PROGRAMMING SYSTEMS

To the extent that designers of computer systems have considered behavior match issues, we

believe that the designs reflect the designers' views of adequate user models: that the user

could think quite naturally in the terms necessary for modelling the system's behavior. Just

as we have suggested above, for example, that a person "is" a pseudo-parallel processor, the

designer of one of the early systems described below might have said that a person "is" a

finite-state automaton We see a remarkable progression m complexity from early systems to

today's IPS systems, reflecting perhaps an increased respect for the complexity of human

processes. (*) In the discusiion that follows, we present several different IS designs, each

based on a different interface behavior model. Following the description of each model is a

list of real systems which approximately fit into the category defined by the model.

3 A BATCH COMPUTING SYSTEMS

We mention these systems only for completeness. The meager control languages provided for

these systems are adequate to define the environment and resources necessary for a run, and

to specify the order of application of programs in a multi-step job To be sure, systems

exhibiting evidence of human engineering are welcome to batch users. In fact, we could profit

by applying some of the lessons learned from IPS design to the batch regime. However, there

is not much to be learned about the problem at hand from analysis of batch systems.

We include in this category systems which use terminals for so-called remote job entry (RJE),

since they are not truly interactive systems.

<*> The structure of this section is largely the result of a conversation with J. Mitchell.
16

 —— ■■■ndax. _—

■~m> jmm mm*m mmummm • ■*■■ ■■ n «ii ll^wlMMWPppw^ppB^■^IWPl^|^ll!^«ll^!■^wlw*lWW'"^!»»■^^l^l"^w,'

3.B. EARLY INTERACTIVE SYSTEMS (FSA/IPS)

The terminal interface of some early time-shared computer systems (examples of which thrive

today) provide an excellent example of what we call the FSA/1S model. Here the system is

portrayed as a sort of Finite State Automaton (FSA), which enters a multitude of states, based

on current input and previous states. These states typically fall into a much smaller set of

classes (modes), as we shall explain.

(Based on the arguments in the introduction to this chapter, the implication of the FSA

design is that the user, also, is fundamentally content cast in the role of a very clever FSA.

He must maintain in !iis head a model of the current state, along with the meaning and

legality of the commands he might issue while in each state. Given this human model, the

FSA/IS system provides an excellent behavior match The same sort of argument can be

made for all of the systems which follow.)

This terminal interface model, though failing many of ojr behavior match requirements, has

performed admirably, especially in light of the accompanying software systems (compilers,

loader:;, and the like), which arc typically batch-oriented, and not suited for modification to

highly interactive situation^. Elements of this design exist in nearly every subsequent

interactive system, though some of the shortcomings have been overcome.

The diagram of Figure 3-1 is a simplified state transition graph for the Digital Equipment

Corp. TOPS-10 time-sharing system, written for the DecSystem-10 computer, a system we

consider typical of the FSA/IS discipline.

. i

.1
:.l

Ü

.1
D

!

i

17 I

MMMI ■M_*Kd>Ma>a

nawwii«! ^mww"u»iiii .umummmirmqmmmmmmmmmi* n .1 »«ppppppüyw." ! .■■■.IIH««,I,W»IPU«« . IWI.»".WP"J»I«*IMJ>™I,IW.WIIII mitmmmmmmmmm

1

'

Figurp 31 FSA/IS Bfliavior of DEC TOPS-IO Extcuiivt

IS

— — ■ 111 nn<Ml—illlhMtaiiiir

wmmmmmwm** m^mmt mfwmmmm^m" mmrnwrnr i^mmmmmmmm. Ul IWIIPJUHUI 1 WWIW^^WI^^' '■"l ■""■-

To the reader already familiar with this common' organuatlon, the interpretation of this

diagram should be particularly straightforward. The user approaches the terminal in Free

mode (both system and user, according to our assumptions!) He (and the system) enters the

basic System mode using a restricted, and unique, Login language in erchange, then proceeds

to work .

While in System, or Monitor mode, the user communicates with the system using a verb-

argument syntax (e.g., "RUN X[20,35]" or "COMPILE PTRAN"). which is interpreted

directly by the operating system. If this syntax appears elsewhere in the system (in other

modes), it is due to mimicry, not to any global design. Some of the Monitor mode commands,

notably those requesting simple status information ("What time is it?") perform their

functions, then return immediately to Monuor mode to await additional commands. The

more interesting commands, however, cause other programs to be mapped into main memory

and run, entering one of n multitude of soca'led User states (in User mode), whose input

grammars depend entirely on the program implementations. From here on, the system makes

1 ttle modal distinction. The user can, however, in his programs, define his own substates,

specifying differently at different times what constitutes acceptable communication.

.

Control passes from User mode back to Monitor mode either by program request (only

indirectly influenced by user input), or by use of the special interrupt character, CALL (or

control-C), whose function is always to stop operation of the User-mode program and to

return to Monitor mode.

!

This (crucial) CALL feature falls short of providing the non-preemptive environment to

which we subscribe, but its existence leads us to the following interesting observation:

although the user of this system has no direct access to it, at some level of implementation- a

very low one, in this instance- a non-preSmptive discipline is in effect. The system responds

in a suwlar way to each character as it is typed, echos it on the output device (printer or

display), analyzes it for special meaning (e.g., CALL), then either arranges for the return to

System mode or dispatches the character to the process currently preempting the terminal.

Thus, though control of it has not been granted directly to the user, the value of a non-

preemptive regime has long been implicitly recognized.

. !

At this level, the non-preemptive discipline reduces simply to an interrupt-dnven. multiple

process priority discipline. This example illuminates the intimate connection between non-

preemptive and multiple process organizations.

19

.l_UM<a__ -^.-^ . . ^^^.. ...■

„, r^- mmmmmmn juuap.iiii» im im4ia i«pi|i««i<i.ai mmvmrmt

In general, no simple way exists In these systems to suspend one action temporarily, in order

to perform some other (perhaps unrelated) action, then to return to the original task; mode

changes are usually destructive In that sense. More generally, little, if any, information about

previous states is retained by these systems - such memory must be provided by the user.

3.B1 Attribute Analysis

Let us now analyze systems of this character with respect to our Behavior match attribi tes.

An attribute is classified as variable if it is typically absent, but could be included in a system

without altering that system's basic category:

1) Multiple activities: nonexistent or cumbersome to use.

2) Non-preömption: poor. As we have seen, the entire design embraces the concept of

preemption of the terminal by processes implementing different modes. One must in

every instance type only what is expected at that point, or else a specific (e.g. exit or

substate-entering) or general (e.g. CALL) "escape" character to change modes.

3) Response time: poor. The edit/compile/ run/debug cycles typical of these systems are
long and sequential, often requiring manual intervention between steps to initiate the
next. No fruitful work can be done during, for example, the compile phase.

4) Mode reduction: antithetical In such systems there is a mode for every purpose.

5) Single Language, not provided. There is generally a different language for each mode.

6) Accessibility: variable. In a computer system we desire accessibility to such things as: the
variables of the running environment (the data); the statements or functions of the

language (the program); and, hopefully, the control structures of the system (the

interpreter).

The only global program and data variables in the TOPS-10 system are data and

program files on secondary storage. Any other data are defined and controlled by the
programs which run in User mode; the accessibility of these data is thus determined by
these programs, varying with each instance. These operating systems do not limit the
ability of their subsystems to provide good accessibility; most of the systems which we
will discuss were implemented using the facilities of general-purpose FSA/IPS systems.

20

' myim

■ iMimniirfr ■Iiil MM—iilM«Mliilliirtfciyfcii

I IU«l i pp^nimmnin linn illiiMVMUMlpn < ■WI»w^|ip«B^HPf||pp«p»i»ww(«^^^^WP^I^^pp»p»PWiPlliPW!^WW»pp

7) Context: variable, typically poor. Later we shall assert that a system cannot supply the
continuous context information we advocate without display devices with rapid random-
access capabilities. There is in principle no reason that ich contextual displays could
not be integrated into any IS. However economic considerations have legislated heavily
against their use. Ironically, many batch systems have fairly good context displays for

their operators [25].

8) Non-symbolic features: variable. The manipulative operations we envision could be
provided in any IPS, regardless of category. We know of only scattered instances where

any have been provided.

3 B2 Representative Systems

The command languages of most general purpose time sharing systems fit this category. In

addition to the TOPS-10 system [10] used in this section, they include the pioneering

CTSS system at MIT [9], The Stanford Computation Center time-sharing facility [25],

as well as newer systems like TENEX [5], MULTICS [43], and ITS [17]. The latter

three do possess facilities for controlling multiple processes, by explicit assignment of the user

terminal to one process at a time. Nevertheless, for the most part they behave as FSA/IS

systems.

3C. EARLY DEDICATED-LANGUAGE SYSTEMS(FSA/IPS)

This class of programming system was developed for use whr.re the needs of the user

community did not warrant development of a general time-sharing system, or where the need

for simplicity and comprehensive diagnostic information was paramount. Although, unlike

the FSA/IS systems, these qualify as IPSs (using our requirement that an IPS be built around

a single language), these systems are actually more restrictive in many ways.

The terminal state diagram for BASIC [29], which we consider representative of this

system type, appears in Figure 3-2. Operation of the system alternates between the edit

phase, in which programs are created, modified, fetched and stored to secondary storage, and

the execution phase, in which the meaning of user inputs are defined by the user's program.

The number of mode classes is not really reduced from our TOPS-10 example, but the

number of User mode states is sharply reduced, restricting the user to the single language.

21

.:

.1
:l
:1

i

:!

.1

:i

.!

A

l

kflMi Mmmtm, ^mammmmmmM^m mmm

WJWfl» -T—.-^.,^. »^■lrp,WT,w"•^^^^■•« M II ^HBOTWI^PIIIIIIWI ■

Figure 3-2. FSA/IPS Behavior of BASIC Terminal Interface

. M. WM nmirnnnva«Kf ■• J^-i iui,i,ii««ii,BiM»-«!J«.miii«pwii,. ' • ■■**mmmiiimiu»\\mimmmmFimmmmmmm*'mmiwmimilBlf**'' " mv' Muwwp^m

3.CI Attribute Analysis

FSA/IPS systems have about the same degree of succesj at meeting the behavior match

requirements that FSA/IS systems do. The one possible exception is the single language

criterion. BASIC does not even really qualify as a single language system, though, but is

simply a restricted (or dedicated) language system; there is no intersection between the syntax

of the program editing commands and that of the statements which are edited.

D
i

ü

3.C2 Representative Systems

BASIC and its derivatives are representative of this "compile and go" class.

3.D. REDUCED MODE SYSTEMS (FSA/IPS/RED)

These are the first truly interactive systems we have encountered. In these systems the user

can switch rapidly from program modification to partial program execution to variable value

query. They are also the first really single-language systems we have seen: statements which

implement user algorithms resemble in syntax those for modifying program text and for

controlling (starting, stopping, interrupting) execution of the algorithms. Also, in most cases,

either type of statement is legal whether executed "directly" (typed in at the terminal,

interpreted and obeyed immediately), or "indirectly" (as part of some previously created

program).

Our archetypical system of the FSA/IPS/RED type is JOSS [71 Figure 3-3 is an

approximation to the console state transition diagram for JOSS. Chiefly due to the

implementation of all functions as part of a single language, the segmentation of programs in

that language into parts and subparts (steps) which can be executed separately, and the

implementation of an interpreter for the language which can to perform these functions

incrementally, the designers were able to reduce greatly the number of modes. In JOSS,

there is the one predominant Command mode, the nearly irrelevant Free mode, and the

mode entered to accept input to the user program, on program request.

A system of this sort could presumably support any programming language. However, most

do not feature any but the simplest name scopes (static or dynamic), since the command

routine operates only at the "top level" of the system, requiring suspension of user program

23

mmmmmmmmmt^^.^^^. -—-^ __
 -■■■'■■■ ■

w^Pw^w^^pppppipippippiliilP*^^ ■ww""" i WUJII iwimi »wf r

execution (and perhaps loss of local context) before control returns to it. JOSS, for instance,

has only a single naming level (all variables are global). Others allow simple local

parameters to procedures, ta other syster %, including some LISPs [49], it is possible to

inhibit loss of local context after an error, or after an otherwise interrupted computation.

Because the nested User structure to be exhibited in the next section does not exist in these

systems, full interactive control is usually not possible in these suspended environments;

typically, only variable query and "backtrace" operations are available.

24

f

- ■■--' w-^**'- *^'^*-^—- -■- *<—'- --- -—■-

1 """- ■ iIIIIIFJIII IIHIIIIIII nii^mpnpBP" HWII.MJII.U i.j|i|ipijijii<j*uui«*üi|iiiiLii.ii!.jiiipiiiipipinpwqwiiii m.vim.iM* t.m

.1
;!

.i

o
j

.!

■i

Figure 3-3. FSA/IPS/RED Behavior of JOSS Terminal Interface I

— --■
.. ■

I
I
I
:

i
i

3.DI Attribute Analysis

1) Multiple activities: poor The single program task may be mterruptable, or even
continuable, but only trivial operations may be performed in the interim without
destroying the state of that task. Complete freedom does not necessarily exist to examine
all active data using terminal commands.

2) Non-pie#mpUon: not provided

3) Response Time: fair. Unless the user's program is running, preventing the system from
listening, commands are obeyed quickly (depending on system load, of course). Gaining
control can sometimes be a destructive process, however.

4) Mode-reduction: good Unless the terminal has been preempted for user input, nearly

any statement or command is legal whenever the system is willing to listen.

5) Single language: good All but user-defined commands ar'? in the same language

6) Accessibility: moderately good. In some systems one can examine the state of any data
item, but only because the complexity of data declaration is sufficiently restricted In
others, one is denied complete freedom to examine all active data from the terminal.

7) Context: variable These systems do not present data continuously (do not support

displays) although they could. They therefore fall short of our context goals.

3.D2 Representative Systems

We have placed JOSS (and systems patterned after it: e.g., AID [II]), along with RUSH

til PL/ACME [63], QUICKTRAN [13], and unaugmented (t) versions of some

LISPs (e.g., [49]) in this category.

(t) LISP is self-defining, allowing the user to write a command loop which, for the most part,
upgr?des the system to the next category.

26

mm

3.E. NESTED USER SYSTEMS (DPDA/1PS)

The systems we have seen so far have restricted the complexity of the programming

languages they could support Major attributes of modern programming languages are the

naming and data allocation facilities which allow multiple recursive or parallel instances of

the data environments for procedures, and multiple use of names by scope-qualification

Most of these facilities have been sacrificed in the IPSs we have described, because otherwise

they could not provide for the user convenient ways to "manipulate and roam around in the

information space which is of interest to him when it is of interest to him." (t) In our terms,

they would provide inadequate accessibility.

The systems of the next category extend and modify the role of the user (or his

representative system interface, if you wish), greatly extending his ability to interact with

complex environments.

($) From [44J
27

..
Our model system this time is LCC [4SI In LCC the user is modelled as a recursively-

instantiable procedure "written" in the language supported by the IPS (see Figure 3-4). The

system interface still interpret: input as program statements, generally executing them

consecutively, in FSA fashion However, the means for accomplishing this are now more

explicit: an activation record for a PAR i 0 (or User) procedure exists on the stack, defining

the environment of the user Each statement submitted from the terminal is treated as if it

were (had always been) the next statement in the User procedure. Such a system resembles at

the user interface (or modeli the user as) a finite state automaton with access to a push-down

stack for data and previo-is state information Such a device is known in automata theory as

a Deterministic Push-Down Automaton, or DPDA; thus our designation of this system type.

LCC is quite representative of the DPDA/IPS

The differences between DPDA systems and other FSA system are not striking at the "top

level"- while the keyboard input is driving the original outer-level User procedure instance.

However multiple instances of User procedure, at differen' recursive levels, are permitted.

The running program may instantiate a User procedure oircctly. by a procedure call; or an

instance may be created synchronously (via a preset breakpoint), or asynchronously (e.g., an

unexpected procedure call [47]) in response to a user-initiated "attention" signal. In any

- - -

case, only one User procedure may be active- responding to the keyboard- at any instant,

and then only when that User instance is the most recently entered procedure. This

automatically prevents any but the most deeply nested User procedure from being active.

Now it is possible to establish a precise interpretation for the meaning of names typed by the

user they are interpreted in the environment of the User procedure in control, just as names

are interpreted in any other procedure. It is therefore possible to provide accessibility to

variables in any environment, by arranging to instantiate a User procedure which can "see-

that environment.

This arrangement still does not meet all our accessibility requirements. For instance, in any

recursive language, for a given User procedure instance there can be variables hidden from

view (using normal access methods) due to recursive instances of the same variable. In Algol-

like languages, the problem is worse, each instance of the User procedure must be considered

to be declared within the procedure from which it is called (or which 't interrupts- it

amounts to the same thing) in order to "see" the data for that procedure. Not only is this

difficult to implement, but it also does not provide access to those active data not in the

lexical scope of any User procedure instance.

LCC does not suffer from the latter Ulsiol-induced) malady, but shares the former with other

systems. It solves them by providing rather clumsy (but complete) means for violating scope

restrictions, through extended names or explicit scope specification, indicating environments

of interest. We feel that some sort of scope-violation mechanism is inevitable for any IPS

which provides both a powerful enough language and an accessible enough system.

28

I

FREE

ACTIVATION RECORD FOR

OUTER-LEVEL USER

ACTIVATION RECORD FOR
FIRST USER-CALLED

PROCEDURE

• •

AR FOR PROCEDURE
n-l

RETURN TO
PREVIOUS
FUNCTION

AR FOR PROCEDURE n

AR FOR SECOND -
LKVEL USER CALL

• •

RETURN TO PREVIOUS
FUNCTION

USER

FSA/IPS/RED

Figure 3-4. DPDA/IPS Beliavior of LCC Terminal Interface

29

..

.1

.!

— fe»-_^_-..

i

S.EI Attribute Analysis

i) Multiple activities: fair These systems, by allowing multiple instances of User procedure
(or a similar construct), gam some of the control powers we advocate, at least allowing
the user to switch his environment of interest without destroying previous information
(losing his place) However the system still has too much of a hand in when and ho'.v
this switch is made, which leads us to the following:

2) Non-Pre«mption: poor. A breakpoint or explicit program call to the USER function
preempts the terminal for the new instance and context. When the user gains control via
"attention", he is the instrument of this preemption. This facility lessens the preemptive
behavior, but does not eliminate it.

3) Response time: moderately good. When a User procedure is active, response is good by
all our measures. During a lengthy operation (e.g., a user's problem program execution),
a new User instance can be asynchronously instantiated, again providing good response
time, at the expense of having to remember (with some system help) to return control to
lower levels later.

4) Single Language, Modes: as before, good.

5) Accessibility: pr ?ent, but impaired. In most of these systems, the complexity of the
name and allocation structures has increased slightly beyond the ability of the user
interface to accommodate it

6) Context: variable

3.E2 Representative Systems

LCC [45] and all LISPs, at least with appropriate user-provided functions, perforrr as

DPDA systems BBN Lisp [53] exhibits this organizanon and, as we shall see, surpasses it

in srme important ways. There are also elements of DPDA behavior in Kay's FLEX design

[28], upon which we also intend to elaborate, for it too exhibits major behavior match

improvements over the systems in this category. The current incarnation of the ECL System

[58], under refinement at Harvard, seems to fall into this category. We shall discuss

Mitchell's SLICE system [44] briefly, chiefly because of improvements in technique and

human engineering attributes which we have not stressed. Other DPDA/IPS systems include

APL [26] and CCS [50]

30

---- - - - ■ ■ -■

"■MB.

3,F. ADVANCED IPS SYSTEMS

In this section we will consider the salient behavior match features of recent IPS tys.ems, or

designs, which have provided much of the guidance and inspiration for this work.

3.F1 BBN LISP

This system [53] behaves mostly as a DPDA system, with several distinct modes in its FSA

component, some of the additional modes provide function editing capabilities and special

facilities within breakpoints. Of Particular interest to us are the contributions which

Teitelman has made to BBN LISP. These facilities first appeared in his thesis, [54], and

have since been presented and elaborated in [53], [55].

Teitelman shares with us the desire for a system whose behavior complements the user's,

aiiuwing him to work more efficiently and effectively. His chief emphases, however, treat user

attributes which we have not addressed:

1) Errors. People make errors when they speak, write, or type. Simple typographical,
logical or spelling errors do not usually interfere with the comprehension of messages T
the recipients are also people. It is therefore irritating and diverting to be forced to
correct such simple errors in order to be understood. Most IPSs are very unforgiving of
errors.

If the User can anticipate more complex errors or exceptional conditions, he can have his

program handle them by advising selected functions to take specified temporary actions

before, during, after, or in lieu of their normal operations.

31

LI

:. 2) Repetition. A common act is to develop, by trial and error, a method for accomplishing
something, then to apply that method again when similar situations arise.

Teitelman's provision for the first attribute is the DWIM (for "Do What I Mean") facility.

This constitutes a refinement of the User procedure/system interface: DWIM routines

intervene before the User procedure is called. They examine the reason for calling User

procedure, and try to handle the situation themselves (e%., by correcting simple spelling

errors, or simple parenthesis blunders.) In the most common configuration, DWIM simply

notifies the user of its actions and returns to the caller with the error corrected. Only when

DWIM fails to find a solution does it invoke BBN-LISP's User procedure analogue.

 -■— -

1
1
I
ü
I
B
D
;;

D
.:

D
::

::

:

i
i
r

It is quite often possible for the BBN LISP user to cancel the effect of an operation, even a

complicated one. using the undo command. This feature is a powerful error-correcting tool

in combination with the DWIM features.

If a user anticipates the need, he can arrange, in most IPSs. to repeat a complex sequence of

operations: he can create a macro or function to do it. then call it repeatedly. However, if he

has simply carried out this sequence of operations, he must then re -eate them in order to

repeat them BBN LISP maintains a History List of recent terminal operations, typically the

last thirty or so. One can redo one or more recent operations by referring to entries in this

list. One can also save a sequence of History entries for permanent accessibility as a Lisp

function. We have attempted to refine this facility in our system (see Section 6.A1, the UCP

Scene)

3.F2 SLICE

The system described here is the one Mitchell uses in his thesis [44] to describe his IPS

methods. His system, a derivative of LCC. shares with LCC the DPDA/FSA/RED

classification, and would submit to essentially the same attribute analysis. Its novelty lies in

its translation algorithms.

Mitchell demonstrates that there is a spectrum of possibilities between a purely interpretive

and a purely compiled system. He discusses the merits of the two approaches in terms of the

inherently conflicting qualities of flexibility and efficiency. Flexibility is the ability to modify

program and data elements interactively, to inquire intelligently about program operation,

and to intervene in the flow of control. Efficiency in this case is a measure of the speed of

execution of the user's program

Mitchell supports his view that flexibility decreases while efficiency increases as one traverses

the spectrum from interpreted to compiled programs. He then describes an interpreter-based

system which illuminates his contentions. Mitchell's system interprets the source program by

compiling and immediately executing sections of it as they are encountered, retaining the

compiled code segments as a fortunate side-effect. By reusing the compiled segments as long

as they remain valid, he obtains a system which smoothly traverses the spectrum from

flexibility to efficiency as an algorithm is perfected, and as the frequency of program

modification decreases. The keys to his methods are the algorithms and data structures he

32

 - - -^^, I bM -"-

developed to detect and correct segments made invalid by modifications to source statements

and declarations.

We shall have more to say about Mitchell's findings in Section 8.E6, for we have borrowed

heavily from them in our translation methods.

S.F4 FLEX
The FLEX mini-computer and extensible language system form the central subject of Kay's

dissertation. The Reactive Engine [28]. This system (and its successors, for it is still in a

state of evolution), until now existing only in experimental versions, gives one as much power

to define and control his own language and programs as any now available, on machines of

any sue. Kay has combined theories of language, software, and machine design in a

comprehensive proposal for an easily learned, personal, and very powerful system.

In the domain of our Behavior Match attributes, FLEX and its derivatives possess qualities

which we have found missing in other systems. Kay's philosophies have strongly influenced

our design.

33

.:

J.F3 ECL
ECL is the result of restirch begun by Wegbreit in his thesis [57] on extensible languages

for IPSs. The current effort is a I .ge project, directed by Wegbreit and Cheatham [681 ai

Harvard, dedicated to the creation of a software laboratory. An interpreter and eqr.valent

compiler for the ECL language. ELI. will allow operation at both ends of the

flexibility/efficiency spectrum. A major goal of ECL is application of sophisticated software

aids to the development of very large, complex systems (for instance, an automatic

programming experiment) M without sacrificing ultimate efficiency.

- ■

Most of the novel aspects of ECL lie in areas not directly treated in this work; efficient

extensible language design is foremost among them. In our Behavior Match terms, as we

mentioned. ECL is at present a DPDA/FSA system. We are unaware of plans for enhanced

terminal facilities at this writing. However, we believe that our methods would apply very

nicely in the ECL environment.

i

I

.;

 imiffc—Kimiuin

FLEX is a disi-ilay-onentsd system, Incorporating a graphics tablet and a special keyset for

convenient manipulative inputs, along with a standard keyboard for symbolic input. The

built-in, extensible FLEX language allows concurrent operation of multiple processes. The

full-blown system, written in FLEX (*), makes copious use of this ability, using parallel

components in the hardware to allow scanning, parsing, compiling, and execution of

programs to proceed concurrently. In this way, though a structured text representation of a

program is the only permanent (and displayable) representation of that program, acceptably

efficient execution is maintained. The system provides powerful display techniques, for

editing and observing the operation of programs, for displaying structured textual and

graphical data, and for "echoing" the user's input of structured data.

i
:

:

i
i
i

i

In our classification system, FLEX is a DPDA/IPS/RED system, whose stack environment is

extended to the stack configuration (similar to that used in the B6700 computer [47J or in

Simula implementations [14]) needed for the operation of concurrent active processes.

3.F5 FLEX Attribute Analysis

1) Multiple activities; good. The system makes use of multiple processes, and the user has
control of them, both in his programs, and directly at the terminal.

2) Minimal Modes; excellent, due to its single input language.

3) Single Language; excellent. All commands are expressible in the user-extensible
language. A few "invisible" edit commands duplicate some FLEX functions, for
convenience in editing. Like Lisp. FLEX is "homoicomc": the executable and external
representations of programs are essentially the same.

4 Accessibility; good. All active data are accessible to the User procedure, and the user can
activate a User procedure in arbitrary active processes.

5 Context, very good. The display facilities allow presentation of user programs in
context, and observation of their operation in that context. The user is free to provide
additional context-rich displays in his programs and subsystems.

(«) We are being intentionally vague about the distinction between the hardware and software.
The machine is microcoded, essentially implementing the nucleus language StXJ the system
kernel.

34

_ mmm ■ -

fr

6 Non-symbolic operations: excellent. The combination of the keyset and tablet supply
impressive manipulative tools which enhance editing and graphical operations. The
short, easy editing commands, and the ability of the user to extend his language,
supplement these tools.

7 Non-pre#mption: almost provided. The recursive (and now concurrently recursive),
nested USER concept is maintained in the breakpoint and terminal interrupt structure
of FLEX. It is not made clear what happens if two processes attempt to break at once.
The user may "ride piggyback" on the program evaluator (observe its interpretation of
the execution of his program, step by step), in order to follow and control the flow of
operations in his multiple processing environment.

Kay would not necessarily stress these points as the most important topics of his work We

would therefore be doing him a disservice to suggest that we have captured the "essence of

FLEX" in this short report. The Reactive Engine is a comprehensive work, which has

contributions to make to most areas of system design.

.1

.i

D

A

u

i

■I

.1
D

i

3S

-■-

3.C. ATTRIBUTE SUMMARY

!

Table 3-1 is a summary of the attribute analyses for the basic system categories we have

studied. FLEX is Included in a separate column, because it excels in many attributes.

Table 3-1. Behavior Match Attribute Summary

Catepory FSA/IS FSA/iPS FSA/IPS/RED DPDA/IPS FLEX

Attribute

Multiple Activities ? - X •

Single Language x • • V

Non-Freemption - - X

Response time • X •

Minimal modes x X •

Maximum context ? ? ? •

Accessibility ? • • •y

Non-symbolic ops. ? ? ? •

I
These systems do not support this behavior; their implementors may not

agree that such behavior is desirable.

x All or most of these systems partially support this behavior.

? This attribute is generally absent from these systems, although nothing in
their basic designs prevents its inclusiori.

•s These systems support this behavior.

D
36

MMM -- ■ -...^.-u. - - MM&d

11
0

:l
D
Ü

CHAPTER 4

DESIGN OF COPILOT

In this chapter we shall use the criteria of Chapter 2 to help specify the design of our

experimental IPS, COPILOT Here, we shall match the human traits to the corresponding

desired behavior of the system We shall also introduce additional design decisions (choice

of language, method of interpretation, etc.) with reasons for their choice, although these do

not relate directly to the behavior match topics. Finally we shall present an overview of the

COPILOT system, w :h emphasis on the ways in which it meets the design criteria.

Subsequent chapters will present the COPILOT system in more detail.

4.A. ACHIEVING THE BEHAVIOR MATCH

I)

4. AI Use of Multiple Processes

If one accepts our assumptions, people can monitor multiple simultaneous external activities,

and can maintain, at the conscious interface, multiple pseudo-parallel "processes", or

"coroutines" of iheir own, while pursuing a task. They want to be able to schedule their own

actions independent of the order or frequency of external requests (non-pre#mption), but they

desire rapid response, at least by acknowledgement, to their own requests for services.

To satisfy these requirements, we must first include faaii les, in the language and operating

environment of our IPS, for the specification of multiple processes, allowing programs to

instantiate, activate, suspend and terminate "simultaneous" operations. Thomas [56] defines

a process as "an acllvHy comprised of a time-ordered sequence of actions". Within a

computer system, a process is usually represented by an algorithm, specifying the sequence to

perform, a collection of data elements upon which that algorithm can operate, and a pair of

indicators, or environment pointers, which together identify the current point of operation

within the algorithm, and the current active values within the process data By alternating

among sets of environment pointer pairs, a single computer, or processor, can, in large part,

simulate the concurrent operation of more than one process. This allows the creation of the

multiple processing (or multiprogramming) environment upon which this work is predicated.

We will describe the specific COPILOT implementation in Section 5.C4.

37

,-,

■MMMHMi .—^ ■ ^

38

M - - ■ ' ^

i

The use of multiple-process facilities must be extended to the operation of the IPS itself.

This, as we will show, allows us to provide the terminal user the ability to control processes

directly. More importantly, we will use the multiple process discipline to provide the

decoupling effect needed for non-preemptive control with good response time. Our process

structure comprises a high-priority User process, operating a User loop (see Section 4.C2),

to listen to the keyboard and respond to its commands, combined with a Post process to

maintain a display of the status of all processes. This allows the user's problem, or target,

programs to run in one or more target processes, undisturbed by terminal operations except

where interaction is intended. Conversely, these target processes are not allowed to disturb

(preempt) the User process, so they cannot bother the user save by supplying status

information to the Post process. The User process replaces the recursively instantiated User

procedure of previous systems.

i

We also hope to show that an IPS which uses multiple process structures properly can

operate very efficiently, in its use of both time and space, particularly when the interactive

facilities a-e not actively in use.

y

.1

.i

i

.

4.A2 Use of Displays

We have argued that, ideally, one's statements should not be dependent on context for their

interpretation (mode-minimization), but that one finds it easier to interpret communications

when they are surrounded by appropriate contextual (environmental) information.

Applied to IPS design, this need for adequate and current context, along with the need for

rapid response, nearly eliminates the traditional hard-copy sequential-character computer

terminal as a feasible terminal output device. To achieve our context match, we require a

graphic display device, which we will henceforth term a display. The most common displays

today are CRT-based point, vector, or raster-scan (TV) devices.

Current display devices do not contain sufficient area and resolution to present even the

minimum information we require to operate the system. Unless and until displays are

improved, we must provide a reasonable alternative. Among currently possible alternatives

are:

i

i

I

L

0
1

.!

D

D
D

::

i
i

1) to use multiple display screens.
2) to implement multiple virtual display screens. This is possible if the available display

hardware and software permits rapid replacement of a screen's contents.
3) to provide a very flexible mapping of groups of lines to areas of the display screen, so

that the user or program can select the most important text "windows" at any time.

We have chosen to design COPILOT in terms of multiple display screens. It would not be

difficult to modify the design to operate in the virtual screen mode of item 2 above. The

third method would require considerable redesign; its performance under the best

implementation would, we believe, be unsatisfactory, since it would require the user to

remember too much about the complex, time-vaying screen organization.

One important attribute of a display is its speed, allowing it to make large amounts of

information, and therefore adequate context, continuously visible. Perhaps as important is

its two-dimensional, random-access characteristics. We must be able to select and change one

section of the screen without affecting any other section. Using these facilities we can

partition the screen(s) into Regions at fixed positions, each devoted to a specific purpose: the

display of a portion of a program, of some program data, of system status, or of information

generated by the user. We can use this positional constancy to our advantage m achieving

several of our other specific goals:

1) In support of our non-pre#mptive control, the user knows where "o look for information
generated by various runr cesses, so he need not constantly focus his attention on
the output activity of his i.

2) These processes can make the user aware of important occurrences (e.g. breakpoints)
without interfering with his current activities.

3) Due to these visual reminders and event notices, the user can increase the number cf
simultaneous activities which he can oversee without forgetting about them or losing
track of their operation

Our goal here is to give the user a window into his system which is wide enough and clear

enough that there is nothing more he needs to see, and to give him tools for directly

manipulating those things he can see. He should be able to perform most necessary control

and modification functions by pointing and editing operations (again with random access) on

this visual context.

39

■ , «.»—i--. -i--'"■■•'

«»"Wiww■wa!^p■f■■«PBiP|lP■l»"■',,," ' ' 'iiwm*mmm***~**~w^mw ' u nwtmmmi^r^'^mmmf^^mm^'^m^^mmimumvm'wimeiim'^w^'^^'

4.A3 Single Language

We have asserted that people communicate with each other in a single language, with lexical

extensions for special purposes. Therefore, ID achieve our behavior match, we must provide

our user with a single language with which to communicate with our IPS We must give it

enough power not only to perform the user's algorithms, but also to carry out all terminal

operations: editing, program control, variable-monitoring, etc. The User process need only

accept statements m that language in order to provide all system functions. Conversely,

because all terminal commands are elements of our language, the user cm write readable

procedures whose execution he can substitute for sequences of termma', operations. If the

user's recent commands are saved, he can even create these procedures from recent

operations This facility eliminates the need for a special "macro" proviion at the terminal.

(t)

Any additional representations for programs (compiled code or other mterr al structures) must

be totally hidden from the user: we must at all times preserve for him th'; illusion that he is

operating directly in the chosen language. We we will describe methods for maintaining

"equivalent" parallel representations for programs, their data, and other mfcrmation at

several structural levels. We will maintain programs, for instance, as executable machine

code, as parse trees, and in an intermediate "parse token" representation.

(f) In the TVEDIT system for the PDP-1 [48], for instance, one can give a name to a string of
command characters. He can subsequently issue a command, with that name as its argument,
which will cause that sequence of commands to be executed.

40

. i

4.A4 Abbreviation

Our observations have suggested that people avoid repetitive circumlocution by developing

formal concise notations or informal colloquialisms (jargon, slang), depending on the

formality of the subject. It is usually possible to map formal notations unambiguously into

sentences in the base language. There are also tasks which people do that are manipulative

rather than symbolic in nature

We have attempted to provide both abbreviation and manipulative control in our IPS

design The User process, while accepting complete base language statements (sentences) will

also accept shortened, abbreviated commands, each of which can be algonth-nically expanded

into syntactically correct language forms. We have attempted to implement the most common

«__ -•- "*l l^'^^SB^n»"*»!»! I IIW I. Ill HI» IL.ll

simple commands as single keystrokes; in this way we hope to achieve a "manipulative"

feeling for these operations in the mind of the experienced user.

Because these facilities are available, we do not need to worry too much about the length or

ungainly structure of our basic system-control statements Most of them turn out to be simple

intrinsic ("built-in") procedures and functions, called with many parameters The standard

abbreviations which use them typically supply all or most of the parameters by referring to

current visual context. The result is a simple, flexible, and well-defined command structure,

as well as a reduced number of baiic primitives.

These abbreviations provide a simple macro processor, which responds to user input, and

creates syntactically correct output We have devoted little effort to the design of this facet of

COrMLOT, except to attempt to make simple operations simple to evoke, and to partition the

system so that these front-end recognition algorithms can be replaced or altered, hopefully

even by the user, without affecting the base language facilities. A good deal of relevant

research into macro processing has appeared m the literature, and could be useful in

improving the appearance of the system. For instance, [34] and [62] suggest possible

improvements We do feel that the simple schemes described in the sequel will suffice to

exhibit the power of the concept

4 B ADDITIONAL DESIGN DECISIONS

The developments of the previous section follow directly from the behavior match

requirements As we stated in Section 2.B, there is still room for a variety of systems within

this framework This section will discuss some of these parameters, presenting the particular

selections we have made in the COPILOT implementation To a large extent these choices

reflect the environment in which this research was begun The goal was to provide an IPS

built around a local programming system (SAIL, [52])

However, in each of the following cases, we seem to have chosen from the more difficult end

of the spectrum of possibilities This is not necessarily laudable, nor even wise. It is,

however, fortunate in the context of this document, since, if our appraisal of the relative

difficulties is true, we can show that our IPS methods are widely applicable

41

-

1 I 1 I ■! ■■■■■ ■ mimm^^^B^mm^m "*'

4.BI Compiler Oriented

The predominant form of IPS is built around an interpreter. In such a system, a source

program is first converted to some internal form, retaining much or all of the symbolic and

structural information of the original This program structure then drives a system routine,

called an interpreter, whose function is to carry out the actions specified by the algorithm.

In a compiler-oriented system translation is from source program to machine code, in which

the algorithm can be executed directly on a computer. Neither the source, nor any

intermediate structures used during the translation, are needed for correct program execution

after compilation is complete.

w

Arguments in favor of an interpretive IPS are:

1) The interpreter is an active agent throughout the execution process. It is therefore easy

to include in the interpretation algorithm facilities for continuous monitoring of special

conditions, dynamically set breakpoints, etc.

2) Semantic information about all program entities (variables, expressions, etc.) must be

maintained throughout execution. Interpreters usually use this to advantage,

maintaining data types and other attributes dynamically. This late binding reduces the
number of attributes the user must declare, and increases the flexibility of the language.

J) Since this semantic information (and other data which is of interest to the user: names,

etc.) is retained anyway, most systems provide sophisticated interactive features which

put this information to good use. This kind of information is typically lost when a

program is compiled.

As we stated in Section 3 F2, Mitchell's factored interpreter methods can achieve the speed of

compiled, though not necessarily optimal, code in a basically interpretive system. With lOfTiC

loss of flexibility, we have adapted Mitchell's methods to a system which maintains iW user

programs in compiled form, compiling changes as they are made, rather than just befor» the

changed sections are executed This allows us to avoid periodic return of control tc the

interpreter to check for modified sections, which in turn enables us to approach execution

speeds competitive with batch systems This is an important attribute for very large systems,

which often run for long periods before requiring any interactive operations. The

disadvantage to compiling before execution is that we may recompile the same section of code

many times without executing it Under some circumstances this will significantly degrade

performance Our method also makes it more difficult for us to accept incomplete programs.

.

42

p tmmmm ■——.—»7—

-"'■l ,,U ' L vm^mmmm m

When they are not interacting with the user, Copilot code segments Ho not require the

services, nor even the presence in memory, of the IPS routines cr data; nor do they require

the presence of the higher-level program structures (e.g. text strings or parse trees). With

proper memory management, this allows debugged, non-interactive programs to approach the

size efficiency of conventional batch environments, without sacrificing the interactive facilities

when they are needed. This performance is achieved at the expense of additional time and

space overhead in the IPS routines In Section 8.D we will present these "select* ve

efficiency" methods in some detail.

4.B2 Static Block Structure

Another important design parameter for any programming system concerns the meaning of a

name in that system: its scope (lexical and dynamic range of validity); how its value is

obtained, and when this binding of name to value occurs.

None of these issues has any direct bearing on our mam topics of study. However the choice

we make has a large effect on the behavior of the language, and therefore on the overall

behavior of the system It has an immense effect on the difficulty of implementing the

language in an interactive environment

We must consider this choice in the light of our previous decision to build a compiler-based

system. Here a modification to the definition of a name can have far-reaching effects These

changes are particularly difficult to handle incrementally, if the code compiled to gam access

to that name must also be changed; eg. if the name is bound to its access algorithm at

compile time

Such is the case, for example, with the static block structure employed in Algol 60 [46]. but

not with the dynamic scope rules used to access variables in LISP 15. where all non-local

names are bound to their values whenever they are referenced at run time. The problem is

compounded in Algol 60 by the static lexical scope, which tends (in practice) to distribute cne

effects of changing a global variable's declaration over a wider range than do other methods.

True to form, we have chosen to use the Algol block structure, again picking the more

difficult end of the spectrum of possibilities Fortunately, Mitchell's incremental compilation

methods are equipped to handle this structure, and we shall use them in our design. The

43

if ■uuiimra^^w^^^w^m*" ^PP« , ■■Uli ■■■■■■V

static Algol block structure affects our ability to display program variables conveniently, as we

shall see.

4.B3 Emphasis on Large Systems

The typical IPS is oriented towards aiding the development of the small (however complex)

program or system. Typical users are the beginning student of programming, and the

occasional user They require that the system be easy to learn and use. that it be helpful, and

that it be resilient to erroneous inputs. Efficiency is usually a secondary issue. When

programs grow too large to survive economically in an interpretive environment, their

creators must abandon these highly interactive and context-rich programming systems for

more traditional batch-oriented methods. A few systems have survived the enlargement

fairly well, among them most LISP systems The LISP user sacrifices some of the flexibility

and interactive facility of the interpreter by compiling most functions. In exchange, he

achieves a significant improvement in speed and size (The user may replace a compiled

function by its mterpietable equivalent in LISP, so that if he anticipates the need to interact

with a function before calling it. he may not suffer at all However, there is a danger that a

function which must be interpreted may be executed frequently enough to dominate

execution time)

In our experience, very large programs need comprehensive interactive methods most. Small

programs, even very complex ones, can usually be debugged with relatively unsophisticated

aids. In larger systems, troubles are often the result of "second or third order effects". These

effects can appear, due perhaps to new kinds of inputs, in routines long thought perfected,

whose details may have been forgotten. Such a situation typically develops only after a

I;ngthy input sequence which would be expensive (or in real-time situations, impossible) to

reproduce. The user needs the ability to apply a wide range of interactive aids to the

problem, wherever it occurs

Many of our COPILOT design decisions are independent of the size and complexity of the

progiams we expect to handle Where they are not, however, we have chosen in favor of

large systems This is the chief reason for our emphasis on efficiency through compiled code.

It is the reason we segment the system so that IPS features can "retract" when idle. It is even

partially responsible for our choice of a static block structure, since this name structure

sacrifices le's efficiency for its power than do other schemes

ii

--- ---■

mmm *nmm*^ iMPni i iiiniiiiuiiij ii i -^-r^. ■MVP H 111 "

i
I
I
:

:

;;

::

We do not claim to be alone in decrying the neglect of large systems in IPS designs.

Remedying it is an important goal of the BBN block-compiled LISP features [53], the

ECL system at Harvard [58], MPS and Smalltalk, being independently developed at the

Xerox Palo Alto Research Center, and Lisp70 under development at Stanford. All of them

are highly interactive systems, embodying many of the principles we support (see also Section

3.F).

4.B4 No Automatic Program Composition

Most language processors pl?ce no restrictions on the assignment of language elements to text

lino?, the indentation of lines, or the spacing between elements on a line. The composition,

or physical appearance, of a program strongly affects its readability. Not inly do people

disagree with each other concerning program composition rules, but a programmer may also

vary the format he chooses from one program area to another. We have therefore chosen to

do no recomposition of user programs, but to retain the form in which they are submitted.

This does not preclude the provision of composition tools (e.g., Prettyprmt in BBN-LISP), as

optional facilities.

ii
ii
D
ii

4.C. AN OVERVIEW OF THE COPILOT SYSTEM

The final sections of this chapter serve as an introduction to the next chapter, which is a

rather detailed presentation of our experimental IPS implementation, COPILOT it).

COPILOT, as it appears on paper, possesses most of the traits we have advanced. The

current PDP-10 implementation falls considerably short of that, but is complete enough to

demonstrate the feasibility and utility of our recommendations. Section 9.B deals with the

aspects of COPILOT which we consider incomplete.

Our overview consols of pictorial examples which should give the reader (and vicarious

user) a "feel" for the uv of COPILOT. We begin with a description of what he would see

on his screens

(t) The name is derived from TeitelmarTs "PILOT" -- used with permission.
45

MMMM - - -

I,,^l■ll ""»l»W"^f»WP«B^-^~' — - j .. .,„

4.C1 The Environment

We will describe the system as It might appear Jtr- a significant amount of dialogue has

taken place, taking us from the initial state to something more typical. The user faces one or

more display screens- in our implementation we require at least two. Referring to figures

4-1 and 4-2. the available display area has been segmented into several Regions, each

displaying a portion, or window, of a text Scene. («) The configuration shown is a simple

one. This user's entire target (applications) program requires but one process. It therefore

contains at one time at most one active statement, which we will call the Instruction Point

(IP). Our user has simplified the situation by selecting for display only those few Scenes

required to understand the operation of his program, at the current IP and EP (or

Environment Point, indicating the current "record of execution", or active data

environment). We call the current time tl.

The Region marked RPROC, available in one form or another in every IPS, is a

representation of a window of the user's program. The program is stored and displayed in

exactly the same form in which the user (or some program) created it. The context cursor

("►" character) indicates the exact location of the IP in the program, at time tl. The language

is MISLE, which claims Algol 60 as a distant ancestor.

The RDATA Region is the visible representation of the instantaneous data environment,

consisting of the names and values of selected variables at tl. The context cursor ("►") here

identifies the Environment point (EP), indicating the variables for the procedure most

recently entered.

The pOYNA region reveals the dynamic state of the computation through a graphic

representation of the process-stack configurations at time tl, while the RSTAT Region

exhibits the current execution status of all processes (including in addition to the Target

(applications) process the User and UCP processes which instantiate the basic IPS facilities).

These four Context Scene types nearly exhaust the COPILOT repertory, although

unlimited additional user-defined Scene types are possible. A few secondary COPILOT

Scene types are described in Section 5.B5.

(*) The labels at the top of each region name the entitles represented there. They take the
form <region>/<scene>(type), where the type entry Is omitted If Its name Is the same as the
scene.

46

 ■- - ■ -

^^*I»PW laui.uDiipiiii.iii ^wmmmpmmmmm^mmf^mi'i^ -*• '"^ w - iii.iii.nii.iipi<ii||ipp|i|f^piff«iiniin WWminMWi.JllllJiiiL inn

^

.^

V

RPROC/EOIT (PROG)
V

BOOLEAN PROCEDURE EOITdNTECER COHflfiNO, EOIT.SU, EDIT.LIMEi

INTEGER EDITJHAR, PI. A}) STRING SI);
BEGIN

INTEGER SEflRCH.SCENE. SEflRCH.LINE, SEflRCHJHflR;
INTEGER SEBRCH.CNT, TinEO, TIflEli

* OTHER_EDIT_ROUTINES;

BOOLEBN PROCEDURE SEfiRCHUNTEGER S_SCENE(S.LINE, S_CHflRi

STRING UHRT);
BEGIN

INTEGER SCN, LN, CHR, CHlj STRING SRCH.STR;

I SERRCH.PRiniTIVES;

SCN •■ S.SCENE; TIHEl - SYSTEn.TIHEO - TlflE«!
t

SEflRCH.CNT; TIHEli

FOR LN - S.LINE STEP 1 UNTIL GETLENCTH(SCN)

DO BEGIN

► SEBRCH.CNT > SEflRCH.CNT ♦ lj

SRCH.STR ► GET.TEXTTSCN, LN, CHR+1, 999); CHR . t,

IP (CHUFIND.STRINCCUHAT, SRCH.STR)) THEN BEGIN

SERRCH.SCN ► SCN; SERRCH.LINE ► LN;

SERRCH.CHBR ► CHR+CHU1; RETURN(TRUE)
END Comment rtcurtivt search;;

WHILE (CHl»FINO.STRING("r, SRCH.STR) i DO

IF SEARCH(FIND.SCENE(SRCH.STRICH1*1 TO 9991), 1, 9, UHflT)

RSTflT/STRT

USER RURITING Us«r Input

POST BllfilTINC Postivcnl

UCP STEPPED

TRRG1 STEPPED

1

Figure 4-1. Typical COPILOT Scenes and Regions (screen I)

47

V

-IVMIWIWMI IWHW«."" ' ^ '^m^^mmm i IJIIIIIIIIIUIII mn '"" mmmm

Figure 4-2. Typical COPILOT Scenes and Regions (screen 2)

48

/^
 RDflTfl/WTfl —

USER-COflLOK...);
BEGIN

TflRGl.TE)(TPROC(...)|
BEGIN

TBRGI.EDITI...);
BEGIN

...1 SEPRCH.CNT « 12)

...1 TinEl . 4.8$; ...(
T«RC1.SEWCH«(S_SCENE • 3 UHflT > "THIS 0NE")|

» BEGIN
...; CM ■ 17; ...

END)
END)

END;
END)

orwuQ /nvua

11

21 31 41
POST.POST UCP.UCP TfiRCl.:EXTPROG

EDIT

SEBRCH#1

P SERRCH«2

^

.

.

- -

iMuiMi i Ljii.iu.i.ujiMiinwiium HMmmmi ^W* -^n» ■HI

I
i
i

Almost any modern computer terminal keyboard and operating system interface would suffice

for a COPILOT-like system. Ours (see Figure 4-3) can commumcate with the program one

character at a time when desired, increasing the possibilities for abbreviation. These

possibilities are further multiplied by the TOP, CONTROL, and META keys. These keys,

like the alphabetic SHIFT, allow multiple-interpretation of each character. TOP selectes an

alternate character, while the remaining two simply qualify the selected basic code We will

use "«A" for CONTROL-A. "^B" for META-B. and "•C" for CONTROL-META-C.

49

^MHMM ^-"■- MMMh

Best Available

Copy
for page 50

PIW^^^^PBPiPIlliipiPPP^^Ä^PWWPP wmmmm ... 11 III.III.W w*mmmmmmmmm*iimmmmmmmmm

.1

i I n | u | c | 3 | $ | / | - | _ | | | - | •
H i 1 | 2 | J | * | 5 | 6 | 7 | 8 | 9 | ♦ | - | ♦

 I I I I I I I I I I I

A | v | t | # | I | " | ' 1 ' | I | t I l I 1 I *
Q | U | E | R | T | Y | U | I | 0 | P | (|) | /

 I I 1 I I I i I ! I 1 I

| f' W- I S i ■ I < I > I - I • I - I - I - I t | 1 |
iFMfl | frt^«i i H i i i u i F i s i H i j i k i L i s i i i mm*
i i___m---_-i i... i i i i i i i i i r-^:-
IbhIFTI | X | « | V | 3 I
| LOCM SHIFT | TOP | : i * | C | V | B | M | n | , | . | TOP | SHIFT

I I I
I nCT« I C0HTIM5L |

I <#> I «•» !

I I
I CONTROL | HE TR

.1 (■) j <(5l_

N I

LINEI
-I

 wi

«fcT
J

ü
.1

I I
I | Control/Sni < I dt okp

I 1

I '
Tabui itian iroir

Etc«» . yttw,

Reproduced from aEe
best available copy. ^|^

.i

F.^ure 4*3. Tlir S.^iiford Al Project Keyboard

- -- ■ —' ■ -'—' ■ _^..„_,^_»«<u«

... «.,»,...» —»—p>—I ^i" mimmmmmmimmmmmmmm*!'''''**'

I
i
i
i
i
i

n
o

:;

D
I

4.C2 Basic Dialogue

The IPS must provide the routines for reading what the user types, and for invoking the

facilities of the IPS in response. We have said that the nature of these interface routines

establishes the behavior of the IPS, and thus the (interface) behavior the user must exhibit.

We are now in a position to treat the interface behavior of our system in some detail.

We will call that routine which controls the operation of the user-IPS interface the basic

control loop, or User loop. Its existence is at least implicit in all the IPSs reviewed in Chapter

3; usually it is quite explicit, forming the central control 'or the entire system. The basic

User loops are remarkably similar from one system to the next. When the loop gains control

(in a fashion to be described later), it performs approximately these functions:

1) Accepts one command from the keyboard.

2) Deciphers its meaning, and carries out its intent.

3) Reports the results, if necessary.

4) Returns to step I.

An elegant example of this sort of algorithm is the top level of most LISP systems (e.g.

[49]). This algorithm, itself expressed in LISP, can be approximately stated in the LISP

M-expression language [40] as:

L:X[];prog2[prir1l[eval[read[],NIL]];L]

or, using the less pure PROG form

progtML: print[eval[read[].NILi, fec[L]].

I
I
I
I

Although not all IPS implementations can express it quite this succinctly, they all have

something like this Read-Eval-Pnnt User loop op .ating at the command level. Though all

are similar, there are important differences between these User loops. One i« fhe nature of

the commands supplied to the 'Read' function: in an IPS these commands are usually

statements (Sexpressions) in the single source language. The User loops of the various IPSs

can be distinguished from each other by the ways in which they are able to gain control, the

times when that is possible, and the meaning of statements for a given instance of the User

51

MMMM - ----'■

""""■^
wmmnw^mwrm ^mim^mmmimmmmm^mmmm*

procedure or process (the scope of interpretation). In general, they differ in the relationships

between the basic control routines and the remainder of the system.

To a user familiar with any of these systems the User loop in COPILOT will present no

immediate surprises. Commands in the form of MISLE statements are accepted sequentially

from the keyboard, and usually arc carried out in incoming order. Results of user

commands, if they need to be reported, are revealed by changes in the text displayed in the

appropriate Regions of his screen. As long as the operations to be performed are simple,

commands and actions progress alternately, as in JOSS or BBN LISP. By describing-

situations designed to demonstrate the non-preemptive aspects of COPILOT we shall soon

shatter this illusion, but for the present we shall retain it.

COPILOT commands are available for editing program (and other) text, for examining

progiain data, for controlling program operation, or simply for r'.eir effect as statements (to

test program sections, or for "desk calculator" operations). Figures 4-4 and 4-5 are

continuations of the picture sequence begun in Figure 4-1. showing the effects of COPILOT

operations on the contents of the user's screens. Regions are sometimes shown in different

positions from figure to figure in these examples, to minimize the information in each figure

(in the actual system, the Regions would remain in fixed screen and line positions). A Region

is shown only when ihere is a significant change in its data. Each figure represents the state

of the Regions it show: after execution of the commands which accompany that figure.

The locus of user activity is indicated by the edit-cursor. a "A" character beneath a selected

character position in one Scene. Most of the editing primitives (EDIT_CHAR,

INSERT, LINE, etc.) use the location of the edit cursor.

The entries in the COMMANDS column are the actual character strings the user types to

perform the functions described in the examples. Entries in the EXPANDED column are the

actual MISLE statements which he could type to get the same effect. Table 4-1 briefly

describes the functions of the commands used in these examples. More complete descriptions

of these commands and their expansions appear in Chapter 7.

A

.1

.1

D

D

0
:

U

52

aaaaaMBi —MMiaii^fi M ■--—"■—-

WHüP^ü^PPw^iwwiwipwwPPnwpwni^"* HI,, .jLiwH^nwuiwimiiii MROT^wnmpfpiiRiivipiiiRnmiuijiiPJ v .wmmnmnmm

Table 4-1. Commands Used in Chapter 4 Examples

COMMAND MEANING

•n<cr> Move the edit cursor ("A") down n lines (n is a number, and <cr>
means "carriage return").

•notF<char> Move the edit cursor to the nth occurrence of the character <char>
following the current cursor position.

•: Move the edit cursor to the first token of the statement which begins
nearest the current cursor p sition.

<char> Place <char> in the current edit cursor position. Replace any
character which might already be there,

•naD Delete n characters.

•; Move the control cursor (instruction or environment point indicator
("►")) to the edit cursor position.

•, Move the edit cursor to the control cursor position.

•B Set a breakpoint (insert a BREAK statement, see below) at the
statement nearest the edit cursor.

•P Allow the process indicated by the DATA Region containing the EP
control cursor (V) to proceed. This is usually used to resume a
process after a break.

•X Allow the process identified by the EP cursor to execute one
statement, identified by the IP cursor.

•S If the statement at IP contains subsratements, allow the process to

continue to its first substatement. Otherwise, this command is the
same as »X.

*&<string> Execute the statement specified by <string>, in the environment
specified by the EP context cursor ("►")•

•*" Make visible the PROG, DATA, and DYNA Scenes corresponding to
the most recently broken process.

58

t

■ - - inniiüiiiaaialMir n

•M<str><cr> The string <$tr> 1$ the name of new data which replaces the current
data in the Region containing the edit cursor

#n,R Move the edit cursor to the last position it occupied in the Region n
Regions away from the current one. where Regions are arranged in a
reasonable circular order.

- A statement containing only an expression means that that expression's current value

should be displayed in a DATA Region (eg.. "J;").

- "BREAK(proc)H will cause the process named proc to suspend when it encounters the

BREAK statement.

- "I si; s2; . sn } sm' , where si. etc. are statements, is equivalent to "BEGIN si; sn; sm

END" See Section 7.D3. which describes these temporary statements.

After examining these figures, it should be clear why some forn. of abbreviation is desirable.

A user .hould not be forced to submit a "mouthful" like "MOVEXURSOR(...)" simply to

reposition his edit-cursor although the same string might be the best form (for precision and

legibility) to include in a program ("macro") to position the cursor. Consequently, we have

caused the command "<cr>" (carruge return) to perform the same action as the

MOVE.CURSOR operation in Figure 4-4. by a mechanism explained in Section 6.B2.

In fact, the form marked COMMAND in^each of our examples is the preferred form of

direct input to our User loop the expanded forms are always available for inclusion in

progi ams and for documentation

Notice that the cata display statements of Figure 4-5 are executed for their effect on the

program, operating in the program's environment Others operate essentially in the

environment of the system (the "interpreter"). We will show these relationships in detail in

Section 7.C8. This distinction is a very important one. the subject of a great deal of study

by Fisher [21] and others (for instance. Bobrow and Wegbreu m [6])

54

.

.

..

Mt ^mm

RPHOC/EOIT (PtOCi
N

BOULEPN PROCEDURE E01T(IWTECER COnflONO. EOIT.SCN, EDn.LINEj
INTECER fDlT.CHOR, Al, B:; STRING SI);

BEGIN
INTEGER SEPRCMJCENE, SEflRCM_LlNE. SEORCH.CHBRj
INTEGER SEORCM^CNT, TinE«, TlflEi;

I OTHER.EDIT.ROUTINES;
BOOLEBN PROCEDURE SERRCHCINTECER S.SCENE, S.LINE, S.CHflR;

STRING UHPT);
BEGIN

INTEGER SCN, LN. CM». CHI; STRING SRCM.STR;

/ SERRCH.PRiniTlVES;
SCN . S.SCENE: TIME! - SVSTEM_Tin£(l - TinEB;
SEBRCM.CNT; TIHEl;
TOR LN . S.LINE STEP I UNTIL GETLENCTH(SCN»
DO BEGIN

S£BRCH_CNT . SEflRCM.CNT ♦ 1;
SRCM_STR . 6ET_TE)iT(SCN, LN, CMR*1, 999); CMR . 1;

*
IF (CHl.riNO_STRING(UMOT, SRCM_STR)) THEN BEGIN

SEBRCMJCN - SCN; SEW»CH_L1NE ► LN;
SEORCM_CHPR . CHR»CH1»1; RETURN(TRUE)

END COM»«"! rtcurti.i (•«reh;;
*■ UHILE (CHKflND.STRINCr/-, SRCH_STR!) 00

IT SEPRCH(FIN0.SCENEISRCM_STR1CH1.1 TO 999)), 1,»,UHPT)

til

ID

RDRTB/OPTP

USER.COPILOT(...);
BEGIN

TBRGi.TEXTPROGC...);
BEGIN

TPRGl.EOIT(...);
BEGIN

...; SEPRCH.CNT . i2;

...; TIHEl . 4.W; ...;
TPRG1.SEPRCH#:(S.SCENE . 3. .,

*■ BEGIN
...; CMR . i- ...

END:
END;

END;
END:

UHPT . "TMIS ONE-);

;:;

CCinOND EKPBNOED COirENT

wk*zr> MOVE .CURSOR ICRNT_REG, *. 6, 8,
<»P ; F IND.STRING ICRNT_R£G, "; •, 1) ;
»FC FIN0lsTRING(CRNT_REG,"CM);

• ; SET_P(CET_PROCE33(EP),
Eon .STRUCT (CRNT_REG) l;

■I STEPPiCET.P»OCESS(tP), ■*■);
mt STEPP(GET_PROCESS(f.P), ■*■);

i); til Hevt in« «o>t-curtor (•) dour. 4 I mat,
th«n out 1o th« lint "C" »M«r » ";"

121 1^0^« th« COnltnl cursor (►) , .denlilymq
lh« IP (Ir.»lruct ion Point) to th«

«flit-curso"- loc, thon •••cut* tuo
ttntt. Th« «(nqnaant to tn*
.«ri*6i* CMR n«(cn«nqtd its .«iu«

fro» 17 in th« prawoui oij^r^» to
I in i- i on*.

Figure 4-4. Simple Editing and Execution Control (part I)

19

mmmm mm

s- RPROG/EOIT (PROG) N
INTEGER SE(«CH_SCEM£, SEflRCH.LlNE, SEBRCH.CHfift;
INTEGER SE«RCH_CNT, TIflE», TII1E1;

I OTHER_EDIT_ROUTIN£S;
BOOLEBK PROCEDURE SEflRCHUNTECER S_SCEN£, S_LINE. S.CHflRi

STRING UMHT);
BEGIN

INTEGER SCN. LN, CHR. CHlj STRING SRCH_STRj

I SE«RCM_PRIflITIVES;
SCN ► S.SCENE; TIHEl * SYSTEHJIHEO - TlnEB;
SEBRCH.STR; TIflEij
TOR LN v S.LINE STEP 1 UNTIL CETLENCTH(SCN)
00 BEGIN

SEBRCH.CNT ► SEflRCH_CNT ♦ ij
SRCH_STR . CET_TEXT(SCN, LN, CHR»1, 999); CHR . I;
IF (CHKFINO.STRINCCUHflT, SRCHJTR)) THEN BEGIN

SEBRCH_SCN - SCN; SEfiRCH_LlNE » LNj
SEBRCH.CHflR ► CHR*CH1»1; RETURN(TRUE)

ENO CoMnnt rtcursiv« t««rch;;
IF (CKl-FINO.STRlNGCr, SRCH.STR)) THEN

4

». IF SERRCH(FIN0_SCENE(SRCH_STR[CHU1 TO 9991) .l.l.UHflT) 131

ROfiTR/OfiTP

USER.COPILOTC...);
BEGIN

TRRG1.TEXTPR0C(...)|
BEGIN

TBRGl.E01T(C0nnRN0 • 17, ...);
BEGIN

...; SEBRCH.CNT . I2i

...; TIHEl . 4.«5; ...;
TflRGl.SEARCH«(S.SCENE .3, ...

»• BEGIN
...; CHR . •• ...;

SRCH.STR . "IS IT THIS ONE'"
ENO;

END;
ENO;

ENO;

(41

UHBT "THIS ONE")

[41

„

.

..

..

..

.,

connnNO EJIPPNDED

■, SET_CURSOR(GET_REGION(IP),
GET_LINE(IP). CET_COLUnN(IP),

IF (DIT_CHOR(CRNT_REC,"IF",i)
«3«0 EDIT_CHflR(CRNT_REC,NULL,-3)
»2»F0 FIUlIsTRING(CRNT_REG,"0".:)
THEN E0r_CHOR(CRNT.REC."THEN",l)
itS STEfP(GET_PROCESS(EP),"«")
■tSRCH_STR;.cr>

EVRLCSRCH.STR^.IP.EP)
.4C0nnfiND;.cr>

EvnLcronnBHOr.iP^Pi

COnHENT

(31 Nou brmq tna to t cursor to th« n«u
-1); centot cursor (IP) position, chtnqs th«

"UHILE" to M "IF" (ropltco "UH" by "IF",
thon dolot* "ERE"), »nd •*»• "00" to "THEN".
Than "sttp in' to th« st*t«m»ni at IP by
«««cutinq th« (succ«s<i<ul) t«st *nd susp«ndin9
«I Ih« subst«t«Mnt.

141 Fin«tly, «««cut« d«t*-0ispl«y op«r*tions
to mspoct (And r«t4in in VI«H) SO««

addition«I v.',ri«bl«t.

Figure 4-5. Simple Editing and Execution Control (pirt 2)

56

MMH

4.C3 A glimpse of Non-preftnption

The User-loop of COPILOT is continuously active. This means that, within second or two

(a reasonable response interval) after accepting one command, it w.ll be ready to accept (and

act on) another. We have arranged to implement those operations which require longer

intervals as separate, lower-priority processes, in order to maintain this response. Chief

among these other processes are the user's target (applications) processes.

I

Figures 4-6 through 4-8 portray a sequence which we hope will not appear too contrived.

Program-editing statements (expanded from the simple »B command) first add a BREAK

(breakpomting) statement temporarily Then (Figure 4-6) the »P (proceed) statement allows

processing to continue from (IP, EP) m the Target process. The breakpoint has been planted

to detect an unexpected condition, and the user knows that whether or not this condition

develops, execution will take some time He therefore (Figure 4-7) issues commands to

change some of his Regions, selecting a new Scene for view m the PROG Region and cutting

off most visual contact with the TARGI process, which continues to operate, indicating its

progress by occasional changes in the TIMEI and SEARCHXNT variables. In this

instance the new Scene (SUBST) is a piece of code which he has just begun to compose.

Because the process(es) implementing the User loop algorithm operate at a high priority, his

editing commands (Figure 4-8) receive service as they come in. "stealing cycles" from his

running target, or applications, process In short, he has been able to initiate an external

operation, then to shift his locus of interest, while monitoring some aspects of the previous

operation He has issued a stream of interspersed editing, debugging, and program control

operations He has accomplished this, we contend, with no noticeable loss of continuity, from

his standpoint We have an IPS which satisfies our multiple-process, minimal mode, rich-

context criteria

57

•
RPROC/FJIT (PROC)

V
\

[

BEGIN
INTEGER SCN, LN, CHR, CHI; STRING SRCH.STR;

t SEflRCH.PRiniTIVES)
SCN . S.SCENEj TIHEl . SVSTEt1_TinE() - TIHE»!
SEORCHJTR; TlflEl;
FOR LN'. S.LINE STEP I UNTIL CETLENCTH(SCN)
00 BEGIN

SEflRCH.CNT - SEflRCH.CNT ♦ 1;
SRDL'TR . CCTJCXTCCN, LN, CHR»!, 999)) CHR ► 8;
IF (CHl-FINO.STRINGWHRT, SRCHJTR)) THEN BEGIN

SEflRCH.SCN ► SCN; SERRCH_LINE . LN;
SERRCH.CHRR > CHR*CHU1; RETURN (TRUE)

ENO CoMwnl rtcursiv« «t4rch;;
IF (CH1-FIND_STRINC("#", SRCH_STR)) THEN

IF SERRCH(FrND_SCENE(SRCH_STR(CHl4l TO 9991 >,1,1,UHRT)
THEN RE TURK(TRUE)

END CoMMnl en« I ma;
IBRERMTARG1II RETURN(FnLSE); (SI

*
ENO CoMNnt Starch, ;

CRSE COnnRND OF BEGIN

t OTHER.EOITS;
BEGIN

TIHEB . SVSTEn.TinEO; SERRCH.CNT ► 8;
RETURN (SERRCH(EOIT_SCENE, EOIT.LINE, EDIT.CHBR, SD)

ENO CowMnl i»*'cn cowMnd;

t STILL.OTHER.EOITS;
ENO Cowxnl €«!•;

ENO CoMMnt Edit;;

 RSTPT/STRT

USER RUfllTINC U$»r Input
POST RUfllTINC Potttvtnt
UCP STEPPED
TflRGl RUNNING (51

.1

.,

.

u

Ü
/

COnnflNO EXPANDED

•4.er> MOVE_CURSOR(CRNT_REC,*,e,8,8);
• : STRUCT_nOV£(CPNT_REC,":")i
mi EOIT.CHflRtCRNY.REG." IBREflt-(TRRCllI",!)i
■P BCTIVflTE(GET.PROCESS(EP));

connENT

(SJNou "plant t breakpoint* (tht ttniporar^
'BREAK(TflRGl)') «t « point which uill
only b« rttchod if *r «rror occurs, «nd
lot Ih« procoti procood.

Figure 4-6. Control of Multiple Procfsses (part 1)

58

MMM

/^
RPROC/SUBST (PROC) N

PROCEDURE SUBSTUNTEGER S.SCENE. S.LINE, S.CHflR;
STRING FRO», TO) INTEGER HOUnRNY);

nil«
INTEGER TttlEl, LN;
FOR LN . S.LINE STEP 16)

ROBTP/OPTP

USER.COPILOn...)!
BEGIN

TflRGl.TEXTPROG(...>;
BEGIN

TPRGl.EOIT(COnnRNO .17, ...)|
BEGIN

...j SEPRCHJNT . 116|

...; TlflEl . 10.87; ...j
TflRGl.SERRCH#2(S.SCENE . 3, ..
BEGIN

...j CHR > 0; ...;
SRCH.STR . "R RPNDOn SERRCH STRING"

END;

ENO|

END;

END;

, UHRT • "THIS ONE");

 RDVNR/CRLSEQ (USER) —

C*llin9 Stauencii tor Editing Pnaitiv«!

161

L - CETLENGTH(SCENE)
S ► CET_TEXT(SCENE,LINE,

STRRTCHR, ENOCHR)

B ► FINO.STRINCCFOR', "IN")

raturnt nunbtr of I mat in Scant
raturnt « talactad suostrmq, not

to axcaad ramaminq langth of I ma.

TRUE \\ FOR m IN, FRLSE otaruita.

COntlRNO

•2KR

«nCRLSEO'cr

■-•:yR

i.nSURST.cr>

...STRIN. .

...BEGIN..

EXPANDED COtWENT

[61Hova tha adit cursor to tha RDYNR

Raqion, tamportrily chtnqa its

Scana to ont contaminq 4
tunction-da»criplion dorunant,

than go buck, twitch tha RPROG

Ragion to • tast Setna (or «

routma undar dava I opman t, ana
bag in aditinq it. RSTPT and RDVNR

art still monitoring tha Activity

of tha running orocatt (TRRG1).

Figure 4-7. Control of Multiple Processes (part 2)

59

EDIT REGI0N(NEXT_RECION(CRNT.REC,2).
-1, -1, -1);

t1flP_SCENE(CPLSEQ1CRNT_REG, 1,1,1);
EDIT RECI0N(NEXT_REGI0NiCRNT_RECN,-2),

-1. -1. -Dl
flBP.SCENE(CRNT.REGN.SUBST);
EDIT_CHRR(CRNT_REC,"...ST...",8);
EDIT_CHRR(CRNT.REC,"...BEGIN..-,«);

^^^BB - •■ -~.l i

S0,

RPROC/SUBST (PROC)
X
\

PROCEDURE SUBST (INTEGER 5.SCENE, SJ.1NE;
STRING FROH, TO| INTEGER MOunflNY);

BEGIN
IKTEGER TinEl, LN|
FOR LN - S_UNE STEP 1 UNTIL GETJ.ENGTH(S_SCENE) 00

IF FIN0_STRINC(FR0n>GET_TEXT(8_SCENE.SJ.INE>l)) THEN
BEGIN

1NSERT_TEXT(
4

[7]

RDflTfl/DflTP

USER.COPILOT(...)|
BEGIN

TflRCl.TEXTPROG(...)|
BEGIN

TMGl.EOITCCOnnflNO • 17, ...),
BEGIN

...; SEflRCHJNT • US;

...; TIflEl • 13.23! ...|
TPRC1.S£BRCH/2(S_SCENE .3 UHftT ■ 'THIS ONE');

» BEGIN
...| CHR . 6) ...|
SRCH.STR ■ 'This !• indaad • (trln;*

ENOi
END;

ENOi
ENO|

RSTflT/STRT

• USER RURI TING Uitr Input
POST flUniTINC Petttvtnl
UCP STEPPED

*• TMG1 BROKEN

J

. 1

.1

connnNO

'»ncER TI.
f ■» LN . .
«£CIN..

EXPANOEJ

£OIT_CHIW(CRNT_REG,•
E0IT_CHI»«(CRNT.REGP'
EOIT.CHQRtCRNT.REG,'

contiENi

. IN..',I); 171E.tn though th« TRRG1 proctsi

.FO..",l); h«f lutpandad «t th* BREAK tUUMnl,

.BEGIN..",!) | contmut ad i ting th* SUBST Scan«
(«n •>««pi* ot non-prt«Mplion).

Figure 4-8. Control of Multiple Processes (part 3)

60

I
i
Ü

D
ii
D
:;

D
D
D
::

::

:

:

i

Figur« 4-8 through 4-11 provide our last example, demonstrating non-pre#mption. In

Figure 4-8 the ST AT Scene indicates suspension of the TARCl process due to a BREAK

statement, and flashes the asterisk (at one-second intervals) to attract attention. Our user,

however, has devoted a good deal of thought to the construction of the line of code which he

was inserting when the BREAK occurred. Fortunately, he is under no obligation to do

anything about the broken Target process. He finishes his line, adds another (Figure 4-10),

then (Figure 4-11) calls up the environment of the broken TARGI process, and faces the

bad news with a clear head.

61

'

trmi>~*mm

i

/»"•
RPROC/SUBST (PROO N

FOR LN » S_LIN£ STEP 1 UNTIL GETJ.ENGTH(S_SCENE) DO
IF (CHRl>FINO.STRINC(FR0n,C£T_TEXT(S_SCENE,S_LINE,l))) THEN
BECIN

INSERT_TEXT(S_SCENEP S_LINE, CHR1, TO);
[8]

"v..

.

:i

:i

,i

connpNO

..INSERT T.

EXPANDED

EOIT^HWaRNTJEC,'

COnnENT

.IN..*,I)| (SiR««iih a cenvtniint pi«c(to stop
•ditlnq SUIST bttort handling th»
brtakpomt condition.

Figure 4-9. Non-Preemptive Operation (part 1)

62

IT

ii
D RPROG/EDIT (PROC) 191

BEGIN
INTEGER SCN, LN, CHR, CHlj STRING SRCH.STR;

* SEBRCH.PRirmma)
SCN * sJcENEj TIMEl ► SYSTEfl.TIIlEO - TinEO)

SEflRCH.STR; TIMEli

FOR LN ► S.LINE STEP 1 UNTIL GETLENGTH(SCN)

DO BEGIN
KMCHJCKT » SEflRCH.CNT ♦ 1;

SRCH_3TR ► CET_TEXT(3CN, LN, CHR+1, 999)j CHR - 9;

IF (CHKFlKD.STRI'ir.dJHflT, SRCH.STR)) THEN BEGIN

SEflRCH.SCN . SC^i SEflRCH_LINE - LNj

SEfiRCH_CHBR •> ChR*CHUl; RETURN(TRUE)

END Comment recursiv« »tarch;;

IF (CHKFIND.STRINGCr, SRCHJTR)) THEN

IF SEARCH(FTND.SCENECSRCH.STRCCHUI TO 9991), 1,0,UHRT)

THEN RETURN(TRUE)

END Commont on lint}

IBREflMTflRGDI »RETURN (FALSE);
*

END Comm«nt Sielrch;;

CASE COnflANO OF BEGIN

t OTHERJDITS;
BEGIN

TIMED ► SYSTEn.TIMEO; SEARCHJNT * 0;

RETURN(SEARCH([DIT_SCENE, EDITJJNE, EDITJHAR, SD)

END Comment seiirch command;

STILL.OTHERJDITS:

END Comment case:

END Comment Edi t;;

RSTAT/STAT

USER AIIAITING User Input

POST AIIAITING Postevent

UCP STEPPED

TARG1 BROKEN

COtinANO EXPANDED COnnENT
T0_CONTEXT(-l) j 19) Finally, return RPROG ano RDYNA Region» to

the context ol the process (TARC1) which brote,
and prepare to fix it. See also the next figure.

Figure 4-10. Non-Pre#niptive Operation (part 2)

63

■ i i in i^

s
RDPTfl/OPTfl

»I

, UHflT . "THIS ONE");

USER.COPILOT!...);
BEGIN

TflRCl.TEXTPROCU..»;
BEGIN

TflRGl.EOIT<COnt1BNO . 17,
BEGIN

...; SERRCH.CNT . US)

...j TlflEl • 13.23! ...!
TARGl.SERRCH/r2(S_SCENE ■ 3,

► BEGIN
...I CHR • 0; ...|
SRCH.STR • 'This it i dMd « tlnnq

END)
Mi

Mi
END;

 ROYNfi/DYNfl

1

II
USER.COPILOT

?l 31 41
POST.POST UCP.UCP TflRGl.TEXTPROG

I
EDIT

I
SEPRCHIl

I
t SERRCH#2

191

J
,y

.1

J

.1

.;

I

.1

connflNO EXPANDED connENT
Ri»«lnd«r of ItMl ttttl, «Hir riturnmg
«ttantion to th« luipandad proettt.

Figure 4-11. Noii-Pre«inptive Operation (part S)

64

MMMM ■tMiinili i i iliiiini niiianninri i i

I

I
i
I
1
I
-

::

i

4.D. ATTRIBUTE ANALYSIS OF COPILOT

We will apply the same behavior match aralysis to COPILOT which we applied to other

IPSs. We will indicate, for each attribute, those qualities of COPILOT which satisfy the

requirements imposed by that attribute

The User loop of COPILOT, in common with other systems, fits the .educed mode FSA

model m its basic operation. In common with UPOA systems, the statemeus executed t" this

loop have different interpretations when applied tr different program contexts. COPILOT

can not be considered a DPDA system, however. We have replaced the nested user concept,

which DPDA systems implement by creating instances of a User procedure in some operating

environment, by a sort of "omniscient user" organization The user is given the illusion that

he is "above the plane of his program, looking down" (or some illusion to that effect). He

can, by pointing, cause any active environment to be influenced by his actions. Uüer

"instances" no longer need follow any particular control discipline. (In reality, there is but

one User instance, whose activities invoke appropriate activities in other processes.)

Let us now perform the detailed attribute analysis:

1) Multiple Activities. COPILOT allows the user complete control over the processes he
creates. The system itself makes copious use of the multiple processing and event
handling facilities of the language We have described some of these system processes.
Others operate behind the scenes; they will be described in Chapter 8.

2) Non-pre#mption. Ironically, we have achieved non-pre#mptive behavior by having one
process, the User process, totally preempt the terminal. This process is, fortunately,
designed as the mechanism for non-pre#mptive control of the other processes. The
terminal is always available for user commands.

3) Response time. The ust-r may issue any meaningful command, and have it begun,
immediately after the system has accepted the previous command (limited only by the
time delay of the User loop, which is determined by system load, but should remain
short). This is the combined result of the process structure, the User process design, and
mode minimization.

65

___ . .

.

4) Minimal modes. There are no global modes in COPILOT; no special command must
be issued to begin editing a function, or to begin inspecting program variables. There
is a different command, or statement, in the single input language, for each interactive
operation in the system. This might require more different commands than systems
which provide modes, but the increase is not too great. The number of commands is
held in check by the use of the same text-oriented and structure-oriented editing
operations on each kind of IPS data. Thus, editing the program (e.g., RPROC) Region
corresponds :o a "program edit mode", while editing a data (RDATA) or dynamic
activation tree (RDYNA) region corresponds to some "debug mode" operations. Chapter
7 presents, in just 39 commands and special statements, a reasonably complete set of IPS
facilities, whose power may be enhanced by direct execution of normal language
statements.

5) Single language. Every action in COPILOT is expressible as a statement in the MISLE
language A statement, if correct and .neaningful, will always mean the same thing,
except for the environment-dependent bindings of names.

6) Accessibility. By referring to supplementary data structures, COPILOT facilities can
transcend normal scope limits, gaining access in a controlled manner to names and
values of any data in the "job"

.

.;

.;

7) Context All program contexts: programs, data, and execution state, can be visually
displayed, in a manner revealing their structure.

8) Non-symbolic operations The common operations for editing and process control are
very short, manipulative in nature. We could extend our expansion algorithms to
accept non-symbolic input from devices such as a "mouse" or "graphics tablet", again
creating MISLE statements for execution.

:l

The chapters which follow present the COPILOT design in more detail- first the user level

descriptions, then some implementation considerations. In the final chapter, we will discuss

some of its shortcomings, and some possible extensions.
0

66

CHAPTER 5

THE COPILOT SYSTEM: A USER-LEVEL DESCRIPTION

In this chapter we wish to expand the introduction of Section 4.C, presenting the COPILOT

experimental design in some detail. Our goal is not to write a user's manual, but to cover all

the major aspects of the system, to give the reader a general understanding of its capabilities,

and a feeling for its philosophy.

.

5.A BASIC SYSTEM STRUCTURE TERMINOLOGY

Our discussion of COPILOT begins with the structures we have developed for the display

of information. These structures, while they need not sttongiy affect such things as the

programming language design- the control and data structures it supports- do determine

how the user views his programs, and what role he can play in their operations.

We will show that the Seen.? types defined in COPILOT constitute an adequate external

model for the Information Structure of most block-structured languages and that, when

linked to the operant structures underlying them, these Scenes provide all necessary context

for viewing and controlling program operation.

We begin the discussion wuh a definition of the COPILOT display terminology.

67

j

t

A Rpgion is usually named, crfatfd, and used for a specific kind of Scene, if one wishes to

use the same Screen area for multiple purposes, he assigns multiple Regions to that area In

the current system, no two Regions whose areas overlap may have Scenes mapped into them

(be visible) simultaneously Such a facility would require a priority scheme to resolve

conflicts

We will treat Regions and their relationship to Scenes in Section MH, after a detailed

consideration of Scenes and what we put into them

5 A3 Scenes

We have used the term "Scene" loosely in the preceding paragraphs to describe the collections

of lines displayed in a Region In our formal definition, such a collection of lines is a

"Window" of some Scene if the Scene has fewer lines than its Region, enough empty lines

will be inserted to fill the Window The archetypical example is the Scene used for storing

and displaying program text Program Scenes resemble the user-defined "pages" which often

segment program text files into logical groups A program Scene might be just one page from

the file, although we in:end to suggest an orgacization of programs into Scenes which is more

intuitively structured for interactive operation We have avoided use of the term "page" to

avoifl confusion with the memon "pages" of some modern computing systems

5 A4 Scene T\pes

Every Scene has the same frrmat a set of text lines As we have suggested, though. Scenes

are put to various uses Some Scenes correspond to structures (such as ompiled code» at other

levels, or contain data which system prcxesses need to read The user may also define Scenes

which require special treatment We associate with each Scene a Scene type, a code

identifying its uses

'Kdditional af'nbutes for a Scene include its name, a string optionally assigned to it when it

is created, its length (the numbei of lines), and the .urrent editing position within this Scene

The ec:i! cursor ("*" charactei I visibly indicates this pom: whenever the Scene is selected for

terminal-controlled editing operations

Other attributes could be used to place restrictions on rhe use of Scenes These attributes

-9

1

would be similar to the "Capabilities" of [32] and would specify for each process whether,

for instance, that proces; was permitted to read, modify, or (for Program Scenes) execute the

Scene, who its owner was (for shared Scenes), etc.

5 B CONTEXT SCENES AS EXTERNAL INFORMATION STRUCTURES

Before we consider the Scene types which we have provided in COPILOT, we should say

just what it is we want these Scenes to accomplish to supply the user with that contextual

intotmation needed both to observe the instantaneous state of a computation in a coherent

manner, and to predict and influence its future actions We will refer collectively to these

Scene types as Context Scenes

5.BI Information Structure Models

In [Ml Wegner formalized the need for a way to describe program execution context with

his Infoimation Structure Models He categorized programming languages by the data

structures required to specify their Information Structures within a processor These

structures include algorithms, data, and their control mechanisms A set of Information

Structures. I. time-ordered "snapshots" of program and data configurations during a

computation, an initial configuration IQ from I, and a set of transformations (interpretation

rules». F. taking configurations I to their successors- constitutes an Information Structure

Model of the computation, in a giv?n programming language and sys'em In the Context

Fcenes, we *ill be concerned with the external representation of elements from I. For most

programming languages, Wegner shows that one can further factor the Information

Structures of I into the following components

1) The Program Component a representation of the algorithm
2) The Data Component objects allocated and manipulated by the algorithm
i) The Contiol Component indicators of currently active program steps and data

environments within each active process

5 B2 The Contour Model

Johnston. [27], has developed an Information Structure Model, the Contour Model, for

^0

U

Ü

.!

ü block-structured languages This model has been shown adequate for representing the

information structures of AlgolSO, Algol68 [47], and Oregano, [i], which was designed

around it The Contour Model appears to extend to the complen naming structures of PL/I

and Simula, as well, although it does not support the dynam.cally inherited naming scopes of

Lisp, LCC, and their ilk

Figure b-l is an example of a "snapshot" from an Algol60 program, expressed in the

Contour Model The Program Component is called the algorithm, the Data Compon« nt the

record of activation. In the latter the nested Contours define the lexically nested access

environment, while the dynamic (control, eg caller and callee) nesting is shown by

connecting arrows The Control Component consists of one or more processors, each

defining the locus of control of an independent process, each represented in the model by the

IP (instruction point), and EP (environment point) arrows emanating from the V graphic

which depicts the processoi

::
71

1 bl BEGIN
REAL a.b.x;

2 PROCEDURE PU.y);
REAL Iffi

3 bp BEGIN
REAL c;

4 P(...,...)
5-6 END;
7 b2: BEGIN

REAL b,c,

P(a,b)

9 END
10 END;

A"
Bi :i t Bl

2 P
Jt BP:3 BP
y • |
z

4
r- "

/>(•••,••)

1
6

1
1 1 GOTO 2

® B2
b

•
• c
•

e • • •
CALLP(a,b)

35 8
I

14635

x 25
154S

!|lOO|
BP

BB
1.4

Bl

X 24 1
y .332

00" z jl* f— or

J c|6

-

B2

Fijure 5-1. Tlie Conio-ir Model Reprei«ii:«iioii for an Algoriilim

72

■ !■—— II

-"-- ^Wi

I
;:

■

.!

5.B3 The COPILOT Context Scenes

By viewing a snapshot, I,, in a Contour Model representation, and knowing how the

interpietei, F, operates, one can predict the content of snapshot L^i, to whatever level of

detail one chooses This is precisely the kind of condition we want to create with our

Context Scenes Although we have not used the Contour Model notation directly, we will

show the (potential) functional equivalence between the Contour Model and our Context

Scenes This will demonstrate the adequacy of the Context Scenes as an external

Information Structure representation, for M1SLE and a variety of other languages. To

handle Lisp-like structures would require additional development

5.84 The Snapshoi Rcqu lonicnt

We are limited by current hardware in the amount of concurrence we can achieve Because

much of what we display (the name and value of a variable, for instance) must be converted

from the internal forms required for efficient operation, and because of the expense of this

comeision, it is impossible to record each change visibly as soon as it occurs Text Scenes

are made to agree with changes in the ultimate underlying structures, not instantaneously, but

at frequent and adequate intervals, in a manner ievealed in Section 6C

In order to preserve the "snapshot" quality of the Contour Model in our system, we will

impose the following requirement all visible context Scenes must be updated simultaneously,

each time the display is changed Therefore, at any instant, all visible system information is

a correct tepresentation of some subset of the system state at a single previous instant. Thus,

the user sees is a single coheient "snapshot" of his system, not an album of individual

pictures whose time relationship is unclear

5 B!> COPILOT Context Scene Types

We can now present desci iptions of the Context Scene types. In each we will follow

approximately the same foimat

a) Which component(s) of the Information Structure it exhibits

b) Details of the information content of this type (syntax, semantics)

c) How the information is oiganned into Scenes

73

-

■-^»»^-^—--™-^--—-^^wwppBWPiiw^^'----^^— mmmn^mmmmfwwmmmwm

There are only four different Scene types predefined in COPILOT; program, data, dynamic

structure, and status Scenes We will deal with «ch in turn.

5.C1 The MISLE Language

M1SLE is an e«ily-implemented subset of the language SAIL [52]. SAIL is derived from

AlgolSO [46], with some syntactic modifications to suit the designers. Extensions were

originally made to this base to include a variable length character string facility, and to

include a variant of the associative processing language LEAP [18] More recently, in

response to an increased need for sophuticated control and data structures in Artificial

Intelligence research, a major revision was developed [19]. The addition mo;t relevant to

our needs is a comprehensive set of facilities providing multiple processes in the style of

Algol 68 [61]

The current COPILOT implementation is written predominantly using SAIL, our preferred

language would be a SAIL superset. However, we have yielded in this dissertation to the

need for a language which is simple to implement, and to understand Therefore. MISLE is

a limited SAIL subset, adding to the basic Algol like constructs just enough to support the

IPS primitives which the user will need process control primitives, text strings, etc.

74

bC PROGRAM SCENES - THE PROGRAM COMPONENT

We have designed a programming langjag!. MISLE, in which the user both describes his

algorithms and controls their operation, by manipulating their representations as program

Scenes Although these operators require substantial underlying structure, none is visible to

the user he see only the text of his programs, stored in Scenes. We ha' e chosen this

standard textual representation over other alternatives (eg, Johnston's representation of

programs as flowcharts nested in Contour Templates) for a variety of reasons, among which

are.

1) The notation is more compact.
2) The control structure is more obvious (with a slight loss in the clarity of the data

structure)
3) Editing operations ate easier.
4) The text format is moie easily stored, transmitted and printed.

I
Ü

MMMHMM

ij . wpTi . ».mwi^ii Hi , mi i ii i um i iiiiwii.»!. .i .mi. i umjp.iii ^MMIIIUI... i i.i i n^^^nmBfamgrn

21 <while> ::- WHILE <Boolean.expr> DO <$tatement>

22 <case> :- CASE

<arith.expression> OF <compound_$tatement>

23 <pcall> ::- <id> ({ <expr .list> })

24 <proces$ control statem?nt> : - ACTIVATE (<procfs$Jd>) |

TERMINATE (<process_id>) I

SUSPEND (<process_id>) I

SET PRIORITY (<proces$jd> . <expres$ion>)

25 <pioccss id> ::- <arith expression>

26 <expr list> ::• <expiession> { , <expre$$ion> };-

27 <Boolean expr • ::■ <disjunct> { v <disjunct> }»

28 <disjunct> ::■ <relation> { A vrelation>]<>

29 <relation> ::- <a-!th cxpression>

j <relop> <arith_expression> }»

30 <expression> ;- <arith expression>

{ & <arith_expre$sion> }'

31 <arith expre$sion> ::- { <pni> } <term> { <pm> <term> }•>

32 <pm> :- ♦ | -

33 <term> :- <primary> { <td> <primary> }«

34 <td> :- *|/| MOD

35 <primary> ;:- <id> { [<arith expres$ion>

TO <arith expre$sion>] } I

«.j/.alb I <constant> | (<expre$sion>) |

<process control primary>

<algol-like array element specifications>

36 <process_control.primary> ::■
SPROU i (<pcnll>,<father>,<stacksiie>.<priority>)

EV.TYPE 0 I CAUSE (<evtype> , <value>) |

EV.WAIT (<evtype>) | EV.GET (<evtype>) |

AR EV WAIT (<evtypearray>) | AR EV_CET

37 <evtype> ::■ <arith expre5sion>

38 <fathe:> ::• <process id>

76

.

mm. - " - •■

■•w^wwn " '"'

.1
D
:!

39 <stacksue> :- <arith_ex|jression>

40 <priority> ::- <arith_exptession>

41 <constanr> - <$tiing constant> | <integer con$tant>

42 <commeiit > :- COMMENT <algol-like comment, ending in ";" >

5.C3 Semantics of Extensions

MISLE is for the most part a slightly modified subset of Algol60 with the SAIL String data

type added Its only data types are scalars and arrays of integer and string values, denoted

by identifiers, constants, and expressions Only explicit conversions (string to integer, integer

to string) are provided. The operators ♦, -, o, /, and MOD are available for arithmetic

operations, normal relationals are available f*r Booleans. Strings may be concatenated using

the operator & S[n FOR m] yields the m-character substring of S, beginning with the nth

character Parameters are passed to procedures by value only. Control facilities include (in

addition to procedu. ;s), GO TO, IF, FOR, WHILE, and CASE (alternative selection)

statements A syntactic modification places both the naming and type descriptions of

procedure parameters within the (parenthesized) parameter list, as in Algol W [81

5.C4 Processes

The process-manipulation primitives of the unenhanced language allow creation, deletion,

suspension and activation of processes (see [4] as a reference to the kind of "cactus stack"

process structu.e we employ) We mean by "unenhanced" that these do not rely on the

facilities of the IPS for their operation

Processes are assigned execution priorities when they are created. Whenever a n nnmg

process suspends, or specifically requests it, the system scheduler selects a new process to run,

choosing the highest-priority process which is READY to run (see Section 5 F)

Events are interrupt and process-communication mechanisms A process may cause an event

of a chosen event type, and may specify a value to be associated with the event When the

scheduler next runs (the running process suspends), it will ready any processes which are

waiting for an event of this type, returning the associated value as the result of the function

which does the waiting

77

■■

.....MWI . ,.,...<<....<■ ■waapffP i nmilJILIIBII . inn IxnKUI^.HHIIII.IIIIM pi PWWW^w^ ■' ■ wim

For each occurrence of an external interrupt (I/O, timer, etc) basic system routines simulate a

very high priority process which causes an appropriate event and forces rescheduling as soon

as possible. Processes handle interrupts by waiting for, or testing (polling) for, events of the

corresponding type. This approach to interrupts, as opposed to more standard interrupt

mechanisms like those in [47] ("unexpected" procedure calls), is supported by Wirth [64].

The result is a consistent, process-oriented method for handling all asynchronous activity.

Table 5-2 provides the meanings of the basic process-control primitives. In Section 7.C7

we will describe additional process control functions, intended for interactive use.

Table 5-2. COPILOT Process Control Primitives

Sprout(...)

Activate(pid)

Suspend(pid)

Terminate(pid)

Set priority(..)

Cause(..)

Ev_wait(..)

Ev.getC)

Ev typeO

Creates a new, suspended process, with given »tack size and priority.

An instance of the specified procedure is readied within the new process.
Sprout returns a unique integer process identifier, or pid.

sets the state of the process pid to READY. It wi'I be set RUNNING as

soon as possible, based on its priority and the a' ailability of resources.

Sets the state of the process to SUSPENDED. It will not run again
until some other process Activates it.

Destroys the process pid, and any subprocesses.

Changes the execution priority of a process.

creates an event of given type and value, READIES any processes
awaiting events of that type, and forces reschedu mg.

yields the value of an event of given type. It causes the process calling

it to wait (SUSPEND), if necessary, until such an event is available.
The event is then forgotten by the system.

never waits. It yields 0 if no such event has been caused (and still
exists). Otherwise, it is the same as Ev_wait.

creates a new event type

. .

78

- -

"■■"■, ' "■* "" ' ^ , ■ Li

:.

D
.!

Ar ev wait(..)

Ar ev get(...)

waits for one of a set of event types, specified in an array. The result is
the type of event which was actually caused. Ar.ev_wait does not
delete the event; hence, an Ev.get may subsequently be jsed to fetch the
actual event.

never waits. It yields 0 if no such event exists. Otherwise, it is the same
as Ar ev wait

5 C5 Special Features

We have added the following additional constructs to the language >n order to make some of

the interactive facilities more convenient The additions include variable-display (debugging)

statements, breakpointmg statements, and Scene linking constructs. The syntax follows:

1 <statement> ::- <Scene link> ; <statement>

2 <declaration> ::- <Scene llnk> ; <declaration>

3 <Scene link> ::- • <Scene id>

4 <Scene id> ::■ <id>

:

5 <statement> ;:■ <show>

6 <show> ::■ <expression>

I <5tatement> ::- <tjmporary statement> <statement> |

<statement> <temporary statement> |

<affect> <class>

8 «temporary statement> ;:■ '{ j<class> :} {<switch> !}

<statement> (, <statemeiit>}.:.'}

9 <affect> ::-TURN ON | TURN OFF | DELETE

10 <class> ;:- <ld>

II <switch> ::- ON | OFF

12 <statement> :• BREAK (<process id>) |

ARR BREAK («process id array>)

•

79

m^ 1 «mtwmmmmtwm • • iliinmil I l ■ IIB I •^m*n**r*m?

Each of these additions depends heavily oi -spectj of the IPS which remain to be described.

We will delay explanation of their semantics until the descriptions are complete.

For an example of a MISLE program, refer to the PROG Scene of Figure 4-1. or one of

those which follow it.

5.C6 Program Scene Organization

Traditional program source text organization is straightforward; a deck of cards, a magnetic

tape, or a disc file containing the lines of the program. In the latter case, perhaps the file is

linearly segmented into logical pages, mostly for display purposes.

One notable exception is the file system for NLS [15], developed over the !aic decade at

SRI's Augmentation Research Center. Very briefly, the purpose of this display-based system

is to provide a complete interactive environment for the user, to dispense entirely with paper

and pencil, yielding a corresponding increase (augmentation) in intellectual power. The NLS

work has proved a major influence in this research. We hope to retain something of this

power in COPILOT, while extending its domain to direct interaction with user algorithms.

Files (not only program files) are not organized in simple linear fashion in NLS. Instead,

they are hierarchical, resembling outlines; the NLS user can choose to view only the levH of

detail which suits him: just the major topics, the major and first subtopics, or the entire

structure He can also place hidden or visible links at arbitrary points in his files, providing

a path to related material in the same or other files. NLS makes it easy to follow these links,

to save previous views, and generally to navigate fruitfully about a web of cross-references.

We cannot hope to do the NLS system justice in so short an introduction, nor have w^« space

to describe other text-manipulation systems which support structured file organization. We

can suggest in addition the references [60], [24], and [42].

MISLE programs, being block-structured, are inherently hierarchical We envision an

implementation of COPILOT which would allow the user NLS-like control of the degree of

detail (depth of nesting) of the displayed program. For instance, one could view only the top

level statements of a block, with substatements merely indicated Hansen used something like

this in his thesis [24]. The BBN-Lisp editor, [53], because of the need to be concise.

80

mmm

m>

.!

D

U
i

uses a similar structure-compression technique in its teletype-oriented system. Our system

contains many hierarchical structures, and techniques like these would enhance any of them.

At present, however, our use of hierarchical design is explicit. Instead of fragmenting a

program into consecutive linear Scenes, the user can include Scene link constructs to achieve

a hierarchical segmentation Figure 5-2 gives a simple example. The system views the

program as if it were a procedure, expressed in one Scene, containing the data of Figure

5-2.c; it treats a Scene link as a sort of "macro" call The user views it as a procedure

containing a suppressed subptocedure (Figures 5-2.a and 5-2.b). The system prcvides

complete facilities for "following the links", both forward and backward, when the user

wishes more or less detail. When a Scene link occurs as the last line of a Scene, simulating

linear connections, special treatment avoids unnecessary nesting.

Our personal experience (supported by Mills in [42]) is that it is uieful to »egment a

program so that each Scene is fairly small, each representing a logical section of the program

and of the control structure of the algorithm. The system will nevertheless support Scenes of

arbitrary size.

'i

81

■"•- *m~imr*im*vm^mmmm*—mmmm 1 ■"■"ii

Scene «Stl;
PROCEDURE TKINTEGER DUM);
BEGIN

•SRNP ;
INTEGER J,K; STRINGS;
FOR >1 STEP I UNTIL 100 DO BEGIN

K^>3; K;
WHILE K<>10 DO OUTPUT(RNP(K))

END
END

a) Containing Scene

Scene «Srnp;
STRING PROCEDURE RNP(INTEGER I);

IF 1-0 THEN RETURNf") ELSE
RETURN(RNP(I/10)&PUTCH(I MOD i0*48));

b) Contained Scene

PROCEDURE TKINTEGER DUM);
BEGIN

STRING PROCEDURE RNP(INTEGER I);
IF 1-0 THEN RETURNf") ELSE

RETURN(RNP(I/10)&PUTCH(I MOD 10*48));
INTEGER J.K;
FOR y\ STEP 1 UNTIL 100 DO BEGIN

K«-J*3; K;
WHILE K<J*10 DO OUTPUT(RNP(K))

END
END

c) Apparent Program

Figure 5-2. PROG Scene Linkage

82

I
I
I
I
I
I
I
I
I
I
I
I
T

i

I
:

:

:

;;

r
——— - --

■ Miiaiiui MiMiJi \[iMmmmmmumvw ' «^**^^^m?mmmmmmimmmmm* » ■■ i « "i

mm

I
I
i
i

il

e
D
D
D
I
I

i
i

5.C7 The Instruction Point Portion of the Control Component

As we have indicated, we have distributed our representation of the Control Component

among the Context Scenes In Program Scenes we indicate the IP (for a selected process) by

a special contex' cursor, represented by the V character. This context cursor precedes the

text for a statement in the selected process. Which of the active IPs is selected for display

depends on an indicator in the DYNA Scene (see Section 5.EI). Any terminal commands

which require implicit program location data obtain it from this selected IP.

The context cursor is the visible representation of the active statement within the selected

process. No function used to retrieve program Scene data will ever yield a string containing

the context cursor. See Chapter 7 for functions which yield its location.

5.D. DATA SCENES - THE STATIC DATA COffPONENT

Because algorithmic languages like MISLE were designed before we designed COPILOT, we

had little trouble deciding a representation for the Program Component in the program

Scenes. This is not true of tlie Data Component, where few attempts have been made to

create formal external representations for the data environments (for any language).

Again, a logical candidate might be the Contour Model -epresentation; again we have

decided against using it directly In addition to the reasons ^e gave in Section 5.C, we feel

that use of Contours to display the Recoro of Execution would create Scenes of confusing

complexity. We have instead developed a more linguistic method which we can prove

equivalent in facilities to the Contour Model, thus adequate for Data Component

representation

Our solution requires two new constructs:

(t) Some object to this term because the "language" is not algorithmic (no verbs). It is a
language formally, however. Read "specification" for "language" throughout, if you wish.

83

I) A data specification notation, or Data Language '+). intimately related to the MISLE
language, for defining data values in their static (lexical) contexts (the static Data

«L Component.)

2) A tree notation for exhibiting the dynamic (control) relationships of the Record of
Execution.

 -. - ■■■ Mil ^ Jait«1Ml>ti^fcill»M

n«^^" « ii i.iiiiwaiwino^ifc^vwv'i'ww WPP

We begin with the Data Language.

5.DI Data Language Syntax

: <data layout> ::- <data block>

2 <data block>

3 <data tail>

i <data speo

5 <pcall speo

6 <equalion>

7 <[.ci\\ de$cr>

8 <mstance>

- BEGIN -data tail>

<data speo { ; <data ipeo }* END

• <equation> | <data block> | <pcall speo

<pcall desci > ; <daia block>

- <id> - <constant> I ...

• <instance> ({ «equation list> })

i { <proce$s name> . }

procedure id> {• <nestlng level> }

9 «equation list> :;- <equation> { , <equation> }*

5.D2 Semantics. Pragmatics

The Data Language is a parasitic language The syntax hints at this in its resemblance to

MISLE: the procedure and block structure productions are nearly identical; the equations of

the Data Language correspond closely to MISLE declarations. We require that the

dependence be even more pronounced, however. A <data layout> is meaningless without

reference to a section of the MISLE program to which it is linked (we coi.sider this linkage

in more detail below). One <r)call speo or <data block> may exist at any instant for each

instance of a procedure or block activation.

There are two kinds of information in a <data layout>. The first, provided by equations,

comprises the names and values of selected variables (and expressions) at some instant. The

constant m an equation must agree in data type with the type of the linked variable whose

name appears in the equation, and whose value It represents. We will say that an identifier

is marked if it has been selected by the operations of Section 7.DI for display in data

Scenes.

The second is structural, provided by the block and procedure structure (whose interpretation

is transparent), and by ellipses (...). The ellipsis is an optional device which informs the

viewer that there are variables in the Contour whose values do not appear in ehe Scene.

Ü

1

■

:J

D

U

i

Ö

.:

HaMMgHMMM - — ■^MMMMHIMH

ww^w—^ii iiHHipilBllWPBWpwwppBMP1"1 ii'i"".wwwiff|p^WB^i.i mtui i.u„■»■■imwi.-1.1»

I
i
1

D
D
a
D
Q
D
a
a
D
::

i

The position of the ellipsis (or ellipses) in a <data block> or <equation Iist> corresponds to

the position of the omitted names in the declaration list of the linked algorithm. Figure 4-2

contains a Data Layout for one of the states enrcu..:-red by the program in the same figure

during its execution.

5.D3 Data Scene Organization

The second COPILOT Context Scene type is the data Scene. Each data Scene contains one

data layout which is linked (t) to a procedure in some program Scene. In COPILOT, a

sn.gle data Scene. DS, can contain text level representations for the data from at most one

instance of some procedure, p, and from those forming its lexical ancestors. This means any

older recursive instances of this same procedure, any instances of other procedures in the

dynamic ancestry of p (and in other process branches) whose variables are not accessible to p.

can have no representation In DS. It is possible, however, to form other data Scenes at the

same time which do represent these hidden environments.

The user, or more commonly the system, can create a legal data Scene as follows:

1) Choose a procedure. P-PQ. from some Scene, and some instance of that procedure.

p-PO Begin with an empty data Scene.

2) Record in a <pcall speo the values of marked local variables and actual parameter

values (with their formal names) from p. following the pattern established by P.

3) Obtain the immediate lexical parent, P". of P. and the corresponding instance, p'. from

the static environment of p. Quit if there is none.

4 Embed the lines of the <pcall spec> created in step 2 in a <pcall speo formed by

repeating steps 2 through 4, substituting P' for P, p' for p. An embedded <pcall speo is
inserted just after the other declarations in the <data block> which corresponds to its

point of declaration.

The linkage of po to PQ defines completely the linkage of the data Scene to the program

Scene.

We should emphasize that we have made many arbitrary decisions in this design. We

it) This is the anUe«d«n» link of Johnston's model; its explicit existence is usually omitted in his
examples, but would have to be present in any implementation.

85

 iMMMMUHIiiMi

PPBPIPWWPPSMPPWWWW» i. ■■■■•«piuiiiiniijii "^ ^nn^ ^RMP mm »wwi '^^WPWI^SP"

.!

.1
considered several other algorithms for generating data Scenes. Some of these allowed

multiple instances of the same procedure, thereby includino; much more dynamic context

directly. Perhaps one of these methods (or one which dd not occur to us) would be a

superior one. Surely the designer of a COPILOT-like IPS for a different type of language

should reconsider the issue. Our final choice is based mainly on a desire for clarity. The

dynamic Scenes of the next section help cure many of the inadequacies of the data Scenes.

Section 5.HI will depu.: data Scenes in action. There we shall show how these Scenes are

created and used, emphasizing tne most common situations.

5.D4 The Data Language as an Input Facility

Using Contour Model terminology, the Program Component of a Snapshot, Ij, of a

computation (*)is externally represented in COPILOT by program Scenes. In some sense,

these Scenes also form a complete external representation of the initial state, IQ, since the

initial Record of Execution is empty; they cannot specify any subsequent Snapshot, L, jcO.

Thus, although the language can specify a computation via an algorithm, it cannot directly

express intermediate states of that computation. R. Floyd has pointed out that it would be

useful to have linguistic facilities for constructing these intermediate states (f). This would

make it possible to:

1) Directly create a test environment for testing a routine in an incomplete program which
does not yet include code for supplying that environment.

2) Directly modify an environment, perhaps to agree with a modified algorithm, perhaps
preparatory to altering the instruction point (IP) of a process operating in that
environment (in complicated cases this might be preferable to what the system could do
automatically).

3) Save and restore intermediate computation fötM in human-readable form. (For small
programs, this "core dump" technique would allow one to save computations over
console sessions. In Section 8.B1 we will examine more efficient methods.)

4) View Snapshots of a computation in a reasonable form.

J

]
]
J

Q

:!

i

J

!

.i

(*) The collection of snapshots defining the total operation of one program "run"

(f) Personal communication, October 1972.
86

MM Mkt - ■

mm^^^mmmmm

il

B
it

.1

D
Q

D
D
;i

D
D
D
D
.:

D
::

We have not seen this kind of facility in an IPS. Comment (4) above should reveal our

approach to providing it. We already possess a linguistic facility, the Data Language, for

displaying intermediate computati' 1 states. By selecting a data Scene for editing, then using

standard text-editing operation.; to modify it, the user can even indicate changes he would

like to nake. To turn this into a full data-specification facility, it is only necessary to

convince the system to convert these changes into corresponding changes in the actual

underlying data structures. We have done this in the COPILOT design. Similar user

changes will be shown useful in dynamic Scenes, as well (see Section 9.C1). This achieves a

very pleasing symmetry within the Context Scenes, all constructs are useful for two-way

communications between the user and the system.

The editing operations required to accomplish text changes are presented in Chapter 7,

including special convenience commands particular to data Scenes.

5.D5 The Environment Point Portion of the Control Component

We use here a development paralleling that for program Scenes. There is an Environment

Point (EP) in the Control Component for each active Process, defining its access

environmei t. Information in the dynamic Scenes will indicate all the active Environment

Points.

Again, the user (or one of his programs) may select a "distinguished" EP, which will be

displayed as a context cursor (V) if the environment it defines appears in a visible data

Scene. All terminal commands which require implicit environmental specification will obtain

it from this cursor.

5.E. DYNAMIC SCENES - THE DYNAMIC DATA COMPONENT

Data Scenes can show any or e.ery element of the Data Component, and the static (lexical)

relationships between activations of <blocks> and <procedures>. They do not exhibit the

dynamic connections (e.g., for procedure instance p, which procedure instance called it. or

which created ('prouted) it; to which instance it will return). The purpose of the dynamic

Scene is to provide this information.

87

— - - -■*■

mwnimmw
" '""'""' ""■ »■ >mni.<^immmimmmmmimmmm iiHPimi puipn. ■ i ■ -

We are tempted to suggest mother "language" here, with its own related syntax; we have

decided instead to develop a more graphical representation for the dynamic "cactus-stack"

structure of MISLE programs. This dynamic structure tree does share constructs in common

with Data Language elements, however, and this linkage is important to our powerful

context-roaming operations (Section 5.HI).

There is but one dynamic Scene in a COPILOT environment, containing the single dynamic

structure tree. Figure 4-2 is an example of the dynamic Scene. Its structure is quite simple:

Each node (terminal or non-terminal) of the tree is an <in$tance>, as defined in the Data

Language grammar in Section 5.DI. The root node ("USER.COPILOT»!") provides the

base environment of the entire computation, or "job", including IPS facilities. Instances of

active procedures in a process appear (in order of call) below each other in the same column.

The root nodes of subordinate processes are placed in adjacent columns as shown, then

connected by horizontal line segments to the processes which own them (i). The terminal

nodes of the dynamic tree define the set of active Environment Points.

5.E1 The Context Point

At any one time, there can be but one EP visible (as a context cursor) in a data Scene, and

buf one IP context cursor in a program Scene. In fact, given a computation in progress, and

a particular EP, the corresponding IP is completely determined. Thus to select an (IP, EP)

pair for display as context cursors, one need specify only the EP.

We accomplish this manual selection of e ecution environment using an additiona indicator,

which we will call the Context Point (CP). The CP is represented by a context cursor which

selects an instance in the dynamic Scene. We have functions for moving the Context Point

within the dynamic tree, and for generating data and program Scenes, with their context

cursors, to exhibit the environments which the CP selects. We will describe these functions

in Chapter 7.

5.E2 Adequacy of Scenes as External Information Structures

In Section 5.B3 we announced our intention to show a functional equivalence between the

.!

.1

Q

.:

.i

i

a

i

j

it) For sitrplicity, MISLE follows the retention rules implicit in Algol60, and explicit in Algol68: A
process must be exterminated if its owner ceases to exist.

88 J
P

IM——tMbdMflMH

.i.liililinipil^m^vmw i '«ii iB.ii«! in iiijiu .unuwiminiimimtw mmfm^mm

I
1
il
D

D

D
D

D
Q

ii

Context Scenes and Johnston's Contour Model. This is important, because it expands the

power of our formulation to all the language types amenable to the Contour analysis.

Now that each of our Scene types has been developed, the demonstration of this equivalence

is quite simple: one need only select all variables for display, then create enough data Scenes

to contain each instance of each active procedure and block at least once. Then for each

relationship oi value revealed in a Contour Snapshot one can identify constructs from one or

more Context Scenes which reveal the same relationship or value (a formal proof would

simply enumerate these correspondences).

5.F. ST AT SCENE - PROCESS STATUS

We have consistently omitted one important quantity from our Control Component

descriptions; the execution state of each process. A user viewing a snapshot composed only of

program, data, and dynamic Scenes could not predict from it the appearance of the next,

since he does not know which processes are running, which suspended.

We have therefore added one last Context Scene type, the status Scene. Figure 4-5 contains

an example of one. It indicates for each process the execution status of that process:

RUNNING. READY, or SUSPENDED. In a single processor system there can be but one

RUNNING process; those lacking only the processor to run them are instead termed

READY. For most purposes the two states can be considered equivalent.

We have further distinguished suspended processes in the status Scene by including in their

status the reason for their suspension. (A final state, terminal, is aften included in the set of

process states (see for instance [14] or [4]). In MISLE programs, for Simplicity, all

structures connected with a process, disappear on process termination. The entry therefore

just disappears from the ST AT Scene).

Table 5-3 is a list of the current ST AT Scene state descriptors.

89

MM, NU - mm^ ̂ — - ■HMMIiaMnMbdMAa

ipimjiMiiimniiiiiMpwiuiHi ü i «M iiiwinii.ia.iiii u 11 i uiiiüMMpppN^^^^p^ MUH. Mum»! - m-mx - -m

Table 5-3. Copilot Process Execution States

FLAG STATE RF.ASON

► RUNNING The processor is executing this process, either because it has the
highest priority of any ready process, or because one of then,, after all,
has to run.

READY This process will run when the processor can be assigned to it.

VIRGIN This suspended process has been created, but has npv<c. been READY
or RUNNING.

SUSPENDED This process was unconditionally suspended, either by its own volition
or by some other process with the right to suspend it. Only another
process can reactivate it.

AWAITING x

90

0
.1
..

.1

J

]

STEPPED This process has unconditionally suspended itself due to completion of
a "single step" command to execute but one complete statemen. (see
Section 7.C7). The state is otherwise identical to SUSPENDED. •*

The string x is a description of some condition whose occurrence will
ready the process. The flag ("!") is present only if that condition is to
be satisfied by user action (or a procedure running for the user). The -'
flag blinks on and off until the user stops it.

.1 BROKEN This state is again equivalent to SUSPENDED, except that suspension
occurred due to a Break Statement. The flag (V) flashes until the user
stops it (or causes the process to continue execution), in order to draw
his attention to the breakpoint's occurrence. -1

■ !■ ■^ ■ ^. *m~. . - .-»^—■ A^-t- _.--^

i rnymmmmmmmmmmm^^mmmmimmimmm*** m www—pur—^w

I

Ü

1

:

:

:

i
i
i
i
i

5.G. USER SCENES

The Scene is the basic unit of classifiable allocation for the storage of data to be displayed by

COPILOT. Only Scenes can be mapped into Regions for view. So if the user wishes to

display and edit his own information, he will need Scene types in addition to those we have

provided. Consequently we might provide primitives to do the following:

1) Create a new Scene type, assigning a name to a system-provided type identification.
2) Specify for a new Scene type a process which will activate (trigger) whenever selected

B events occur (Scene made visible, user changed line, etc.).
3) Create and name new Scenes of any type, and explicitly insert or delete information

from them (unless they are protected from modification).
4) Delete Scenes.

This is an undeveloped area of COPILOT. The definition of user Scenes would follow the

same sorts of derivations we have used for the context Scenes. The triggered process (above)

could maintain user-defined structures corresponding to text Scenes, just as COPILOT

routines do for context Scenes- we will describe these methods in Chapter 8. Graphic (non-

textual) Scenes should not prove difficult.

5.H. REGIONS

Regions are named areas with fixed Screen locations. A Region contains the following fixed

(*) attributes:

1) Its name, a unique global identifier.
2) Its location (x in columns, y in lines, Screen •) and extent (x in columns, y in lines) —

thus its Window sue.

When the user or the system Maps a Scene into a Region, the Region acquires the following

dynamic attributes:

1) The mapped Scene's Name, and therefore indirectly the Scene data, type, length,
capabilities, structures, edit and context cursors.

2) The index of the first visible line in the Region.
4) Other bookkeeping information.

(*) Assigned by user or system at Region creation and allocation time — 'an be changed by re-
allocating.

91

 - - — imniiimnii

''••■""'■" mmmm*mm^*mm mmmmmmmmmmmmmi^^^i^mf^^^^mmmm

92

D
.1

This is all that is required to generate the display of an active Region.

The initial system configuration contains four Regions.

RSTAT. with the ST AT Scene (also named ST AT) mapped into it, showing that only
system processes exist, and none are running.

RDYNA, with the DYNA Scene (named DYNA) mapped, showing that the only active
procedures belong to system processes.

RPROG, with no Scene mapped.
RDATA, with no Scene mapped.

the user then proceeds to complicate this picture by fetching and interacting with his

programs.

5.HI Regions for Data Scenes - Special Problems and Provisions

Data Regions require special treatment, because more than one is required for all but the

simplest tasks. In a fairly complex situation, for instance, there might be one or more data

Regions monitoring the progress of running processes, which would cause occasional screen

updates by executing data display statements. Another data Region, containing the context

cursor, would display the data Scene for the possibly suspended process currently under the

user's direct control.

I

. I

We have discovered that these two uses- monitoring running processes, and manually

investigating suspended ones- requ^e data Regions with somewhat different behavior. We

have therefore subdivided daia Regions, providing fixed context and variable context

Regions.

To monitor running processes, we need to guarantee that successive values of a variable (and

only values of that variable) will be displayed in a single location of a screen. The

alternative would be an impossibly "noisy", confusing situation. We therefore provide fixed

context, or simply fixed, data Regions. A fixed Region is one which is constrained to the

display of variables in the lexical range of but one program block, and from but one process.

Whenever any instaice of that block, or any of its lexical parents, executes a data display

statement, a data Scene containing a Snapshot of that instance will appear in the Region.

The structure of data appearing in that Region remains fixed, although the values, and even

- - - ■ ■ •a*

jm i iiiiiuiii mi mmm iwwpwpiPw-f^wippupppmipB mmmmmmmmmmmmm***

the procedure instances represented there, may change. The user should create a fixed

Region for any program section whose behavior is of long-term interest.

For convenience, we have relaxed the Snapshot requirement of Section 5.B4 to permit the

retention of a data Scene in a fixed Region after the corresponding procedure instance has

disappeared. This Scene is replaced whenever a new instance of the same context is created;

it Is deleted whenever the process suspends, If no corresponding Instance really exists. This

facility prevents a fixed Region from flashing and flickering, as instances appear and

disappear.

Our other application Is the manual observation of data values. In this instance, a data

Scene responding to variable query, or to "single-step" operations, will not be changing

rapidly. Successive operations might require the creation of entirely different data Scenes.

For convenience and conservation, we would like to be able to display all these Scenes,

successively, within the same Region. We will call such a Region a variable context, or

variable, data Region. Any data environment may be displayed in a variable Region.

One variable Region must be selected at all times as a default for the display of data which

do not fit into any fixed Region. Initially, the RDATA Region is the only available Region

for data Scenes. RDATA is a variable Region. Until more Regions are created, it provides

all data display services. The user can create specific fixc-d Regions, and additional variable

Regions, If he wishes. In particular, he can designate a new variable Region as the default,

to handle otherwise unasslgned display requests from running processes. The original

RDATA Region may then react to his direct queries, without interference

Due to our data Scene creation algorithms, variable Regions are susceptible to the annoying

"flicker" properties which the fixed Regions avoid.

I
93

 -"■ ■ ■■ riMMMIMHMia

mmmmmm mmm. i '"■ ■ ■ ii'i'i,»' 11.

I
I

CHAPTER 6

THE CONTROL ALGORITHM

This chapter completes the user-level presentation of COPILOT. It has three major sections.

roughly responsible for describing:

A) The Block and Process Structures of the COPILOT System

B) The COPILOT terminal control (USER) loop

C) Constraints on MISLE statements used for top-level control

6.A. SYSTEM STRUCTURE

Every COPILOT job, whatever its function, can be expressed in MISLE as:

procedure COPILOT
begin

•universal;

•targets;

commeiU system intrinsics, basic process-control primitives, global data
structures;

comment a Scene which in turn contains links to the program Scenes
containing the user target, or applications, prograrm.

begin
•system;

•post;

•UCp;

comment all IPS data and primitives, display primitives, invisible to
Targets;

comment a high-priority process to post state change information and
data display requests;

comment the special User Control Process (see text);
•assistants, comment processes created by the user to perform "macro" actions for

him. They have access to IPS primitives and data.;

sprout(post,post high),
sprout(ucp,ucp higher);
•user; comment the terminal-response program, the active body of COPILOT.

end
end comment the system;

Figure t-l Global COPILOT Structure

This program is contained within the system as a Scene nar. • \ Copilot. When a user

activates a COPILOT System for himself, the target and assistants Scenes are empty, and

the UCP is initialized as shown below During initialization, the equivalent of a

Sprout(User.Copilot highest priority) operation occurs, placing the Copilot procedure in the

94

__ ■- •--

■ 'I« M1«1 wmm^mmm " •"•""« -«"' Hl«. .II..M a'ij'

base of the environmental hierarchy: the process named User. This procedure, whose only

active code is the basic control, or User loop, thus constitutes an entire COPILOT Job. All

user and system subprocesses are, as evidenced in the skeleton above, formed from routines

local to Copilot. (This skeleton is a "real" one: it supports the actual COPILOT system, when

it is fleshed out by expansion of the Scene links).

The target Scene contains links to :he user's target, or applications, programs- the programs

which he has written, and with which he wishes to interact Target procedures, running in

their own process or processes, have access only 'o the basic system routines and structures,

and to the environments which they themselves create. They interact with system processes

only indirectly (through the event mechanisms), when they suspend, terminate, or request

modifications to data Scenes This denial of lexical access to system environment is useful not

only in the protection it affords, but also in the storage efficiency it can support (ty allowing

system routines and data to be "swapped out" of mam storap- while inactive- Section 8.D1).

Target procedures, lacking convenient access to the IPS's interactive environment and

facilities, can not be written to operate in the user's stead, performing directly statements

which define the meanings of terminal commands Such an ability is desirable, both to

facilitate execution of command sequences ("macros"), and to allow composition of more

sophisticated sequences, embedding these IPS statements in conditional and iterative control

statements.

The assistant Scene is designed to serve this purpose. Routines which are contained in the

assistant Scene, or m Scenes accessible from it, do possess the necessary access to perform IPS

operations We will demonstrate in Section 9.A1 the means for invoking these sequences,

and for maintaining system integrity when faulty routines are executed

The sections which follow describe the operation of User, and its parasitic UCP. which

define completely the input behavior of Copilot. The concluding section explains the role of

the POST process in maintaining the Context Scenes- defining the output behavior.

D

,;

,,

95

I,. MMPM-JHIM I mmm~™*imi i ■ .1 MP

6.Ai The UCP - User Control Process

The following represents the initial contents of the Scene named UCP:

procedure ucp,

begin

»«lid

A

(The context and edit cursors are, as we have said, not part of the Scene data). The system

implements but one instance of the UCP procedure, as shown above in Figure 6-1. The sole

use of this process, also called UCP, is as a repository of user-submitted statements to be

executed. Operation of the UCP is controlled exclusively by the User loop; descriptions of

UCP functions begin in Section 6.B3.

6.A2 Crucial Primitives

We will introduce most of the IPS priimtives, those statements invoked by the user at the

terminal, in the next chapter. A few, however, are crucial to the operation of the USER loop

itself. Brief descriptions of these routines follow.

$tepp(proce$s."l"). This function is a special modification to the activate function. Its effect

is to activate (make READY) the selected process, having first conditioned that process to

suspend itself on completing one MISLE statement - the one in the current environment (IP,

EP) for this process. Vv hen the process suspends, it will cause a suspension event, for the

Post process, containing the location of the suspension and the reason (STEPPED) for it.

Stepp is usually executed by a process at the same or higher priority than the process it

readies, so that the activated process will not run until the activator next suspends. The

stepped statement may be simple, or it may be complex, containing substatements and

procedure calls which arbitrarily extend its effects and duration. If Stepp is applied to a

running process, its effect is normally to extend that process's execution by another statement,

before suspending; but see Section 7.C7.

set p(proces$, statement). The instruction point (IP) for this process is placed, if legal, at the

indicated statement (an expression derived from functions like the next one).

I kMi „

wm^^i^m^mmßm^mmm w

get struct($cene or region, line, space). This returns the unique statement identifier for the

first statement beginning after tlie indicated point.

insert line(scene or region, line, "string"). The string becomes a new line, in the selected

Scene, just preceding the indicated one. This simple line-oriented function will suffice for

insertions in the UCP More versatile text modification functions may be found in Chapter

7.

delete liiie(sceiie or region, line, coun). The number of lines indicated t/ "count" disappear

from the Scene.

6 B THE USER LOOP

,!

J

D

The ultimate interface behavior of COPILOT is determined by the program which listens to

the terniinal and responds to whaf it hears: the User loop. We shall first present a MISLE

program for a basic User algorithm which \barely) implements a non-pre#mptive terminal.

We shall subsequently subject this algorithm to a series of refinements which enhance its

power and efficiency.

The User process always operates at a scheduling priority higher than any other process's.

This allows the '.«ser process (whose active agent is the User loop) to be set RUNNING

immediately, whenever it becomes READY; the user's commands will have immediate effect.

(See Section 8.E3 for our definition of "immediate"). Adjacent high-priority levels are

reserved for the UCP, Post, and other special processes (see Section 6.A and Section 9.AI).

n

,1

!

Ü

6.B1 Algorithm A - Basic

This program, and all subsequent refinements, would occupy the Copilot Scene in the system

of Figure 6-1. The meanings of undefined procedures in these examples will be explained in

the text following each example. The initial loop does not require the UCP.

97

__. - - --- —

■'"■" ^^ t* m

]
D
D
U

Q
Q

Q

D

D

;:

D
D
D
D
:;

1 user:

2 while true do begin

3 string statement; integer char, state;

4 read: statement •• readalme;

5 insert: insert line(user,8.statement),

6 compil: update_world,

7 doit:

8 cleanup:delete line(user,8,l)

9 end;

Operation of this program is simple: it repeatedly accepts a one line statement from the

terminal, inserts it into the text representation of User loop itself, translates (compiles) it, then

"falls into" the just-presented statement, executing it in the environment of User. Before

returning for more input, it deletes all representations of the statement.

In the function Readaline the User process suspends, aiiuwing other processes to run. until

the complete line (comprising but one statement) has been presented. When the line is

complete, the User process supersedes ™y other running process and returns the resulting

line as a text string. The Insert call puts this string into a new line between Doit and

Cleanup. The function of Update-world is to perform any compilations necessary to make all

program Scenes (including Copilot) executable as they are currently stated. We will defer

any further compilation consideration until Chapter 8, where this and other implementation

topics appear. The user sees only the source-language behavior; we shall at present assume

that the system maintains all neceüary structures to make this behavior correct.

The final delete statement returns the Copilot Scene to the state shown in the figure.

This program alone, coupled with the posting algorithm below, can support a nearly non-

pre«?mptive IPS with adequate visual context. It does not, however, satisfy all our behavior

match requirements, nor is it free from other shortcomings. Our objections are listed in

Table 6-1.

98

MM ■ ■ - mtimt^ammu^mM ii ii>il«iirihii iMMmmiOtM

m^mm^^nm^mm H!lP"»^W^WW»PHPpPiPWP "•" ■»"I"'--'! "i- J ■"•■"'■'»'"»I

.1

Tible 6-1. Shortcoming! of User Loop Algorithm A

1) The Readalme function meets none of our abbreviation objectives, only complete

statements are permitted. Commands requiring multiple lines are likewise not possible.

2) The Ufei loop is selfmodifying! This is unacceptable in Copilot, for all the usual

reasons.

3) This algorithm maintains no record of the user's recent activity. Such a facility,
although dispensable. Is desirable, both as a reference for the user, and as a source of
statements for future operations (see Section 9.A3).

4) If the statement at Doit require» a long (or infinite) time to execute, the non-pre«mptive
facility is lost: the user has no way to terminate its execution. The class of permissible
statements must be severely restricted, probably to the original system-provided

primitives.

5) In practice, this method prov«»« »oo inefficient for the execution of frequent, simple
operations (especially simple text-editing commands).

Remedying these objections is the goal of the refinements we have made to this algorithm.

Let us first provide a mechanism allowing abbreviat d and "manipulative" commands, in

order to eliminate objection «1.

LI
i

.1

99

mmm - tmmmm^milima,mammammm ._

mm
mmmmmmmmmmmm 'l-11 <"'»"•'" wmmmmsmm ■^^ ifWP^W«

1
0
il
0
D

6.B2 Algorithm B - the Expand Routine

To achieve the abbreviation we desire, we replace the statement at Read by:

read: char •- readachar;

expand: case getcom(chai) of begin

comment getcom provides a direct mapping of characters

to commands, often many to one;

f0(char);

i
fi(char);

i

D

•

fn(char)

end

end;

This particular solution imposes a simple prefix grammar on our terminal "language";

another method with a comparable result would be equally acceptable. The f^char)

statements may use the original char, as well as local state information, and perhaps even

additional input characters (via Readachar). To do this, it may have to implement a sort of

local FSA interpreter, in order to gather and correctly interpret the parameters, etc. In other

words, although there are no global modes in COPILOT, the basic User loop recognition

algorithm may establish local modes, corresponding to parser states, to interpret the syntax of

user input. This will normally go unnoticed, but will result in the need for a continuously

active facility which permits abortion of a partially completed command input, in order to

begin a different one.

Executing any f, statement ttstgni a string, comprising a complete MISLE statement, to the

string named statement, which is used, as before, in the completion of the User loop. This

facility, expanding commands to calls on the primitive IPS functions defined in Chapter 7,

permits the terse commands exemplified in Section 4.C2.

100

■ ~- __ [iilajri

<mm wimmrm' m^^mmm

This is but one recognition algorithm. Any method for generating statement strings from

input character sequences could be substituted for it, to provide a custom-tailored user

interface (see Section 9.C3).

6.B3 Algorithm C - Using the UCP

This small modification removes objections «2 and «3 from the list in Table 6-1 (self-

modification and the lack of a history list), and alleviates »4 (lengthy or non-terminating

input statements). In Algorithm C. we replace the Insert, Doit, and Delete statements by:

]
J

.1

01

insert; in$eit(statement, ucp, currentlme),

currentline «- currentlme ♦ I;

compil; ... as before ...

doit: suspend(ucp), stepp(iicp);

cleanup: if desired then delete(ucp, 2, I); comment optional;

This algorithm does not modify itself (objection »2). Instead, it adds its statements to the

UCP text Scene, then causes them to be executed in the UCP process. Depending on the

predicate desired (optional), algorithm C retains all or part of the user's input sequence, or

protocol, in this Scene. By mapping the last Window of this Scene to a Region, the user can

have a visible record of his recent activity. This Scene may be edited, with interesting

results. We will pursue this subject further in Section 9.A3.

Objections «2 and »3 h'ive been overcome by the introduction of the UCP Scene. However

the most radical change in Algorithm C is the introduction of the UCP process. The Stepp

call at Doit arranges to READY the UCP process. Its IP is set to the newly compiled

statement. Its EP is the activation record for the UCP procedure within the UCP process;

since the procedure ha* no parameters or local variables, this data environment it virtually

identical to that of Doit. Thus this change in the algorithm cannot change the meanings of

user statements.

The User process, because it has the highest priority, continues to run after the UCP

ac ivation statement at Doit, The User process does not suspend until control returns to

Read; then the UCP, at a slightly lower priority, is guaranteed to run. The UCP process

a
.i

a

.i

:;

D
101

i

=

wmmmmmmmm^mmmmmmmm

ii
11
1!

y

ü

u

suspends again after executing the one statement. We have achieved the final decoupling

needed for a non-pre#mptive system since, by giving another command, the user can

supersede execution of the previous one (assured by the explicit UCP suspension at Doit).

This implicit abortion facility, though useful for terminating long or runaway commands,

may not always be desirable. See Section 9.B2 for further consideration of the conflict

between "type ahead" and command "abortion".

Although the decoupling achieved by executing user statements in the UCP process prevents

any user-initiated operation from locking out (preempting) the c?rminal. it is not the

preferred method for accomplishing lengthy functions. Instead, statements executed in the

UCP should be restricted to those whose operations will complete in a time consistent with

the response time of the system (a matter of one or two seconds at most). Anything which

takes longer should be accomplished by activating a separate process to do it. The system

provides this facility for standard kinds of operations (e.g.. string search within text Scenes),

and could make it easy for the usv«r to use it for his own operations. The UCP's major

functions are to collect a user input history and to eliminate modifications to User loop code.

Normally, it will run in "lock-step" with the User process, behaving more as a subroutine

than as a coroutine or parallel process.

c

;

ii
D
D
::

6.B4 Algoritlnn D - Selective Interpretation

We can expect certain basic operations to occur quite frequently during the course of a

session with COPILOT Examples are cursor-moving operations, and process control

functions such as Stepp To perform these operations on current hardware, using the

insert/compile/execute algorithms of this section, is quite expensive. For more complex

operations, even fundamental ones, the inherent flexibility of these methods justify the cost.

102

- ^ - - - — - «—

mmmmmmm*mm^~~~~^iim*^m*mmm* UM mi m\iim HNHHII MJ mi

As one possible remedy to the expense of basic operations, we can enclose the final steps of

the User loop with the following conditional:

if length($tatement) * 0 then begin

insert: ...;

cleanup: ...;

statement ♦- null

end;

Now any of the ft cases at Expand can leave the string variable (statement) empty, and

directly execute the statement which it would otherwise store there. Since the execution

environment at fj is effectively the same as the UCP environment, the effect is guaranteed

the same.

6.C. THE POST PROCESS

The input services of the User-UCP process pair join with the output services of the Post

process to define the interface behavior of COPILOT. Post maintains and displays the

context Scenes. Whenever it runs, it updates the contents of the dynamic, the static, and all

data Scenes, assures that all program Scene cursors are correct (other processes maintain the

program text), and displays the results for visible Scenes.

103

J

J

fl

D

Q

J

A serious flaw in this modification is that by bypassing the Insert step we have eliminated

the recording of some of the user protocol, thus re-introducing objection «3 (in Table 6-1),

with an irritating mutation. We have deferred discussion of this anomaly to Section 9.BI.

Fortunately, this recognition and expansion algorithm is easy to replace and modify, in a

modular fashion (see Section 9.C3). J

I.

J

.:

The Post process runs only in response to specific status changes in the running processes, or

to specific requests by these processes. The mechanism in each case is the same: when a

0
i

'—'— nmv ■■

mm ii iw iiiiiiiwpKHpHHpMiHpiniüpiw " ■ ■' *mm*m*m*^'mmm*mm**m "'ii ■»■in

ii

:l

Q

i

U
L

U
u
Ü

!

:l
D
D
D
.

D
::

process makes such a request or changes its status, it causes a posting event, whose value

contains a code describing the reason. This occurrence wakes the high-priority Post process,

which then issues an updated snapshot.

The Post process operates in response to events caused by:

1) Process suspension. The process has BROKEN, STEPPED, SUSPENDED, or is
AWAITING some external waking condition (an event occurrence). The reason for
suspension, and the current process state, are supplied in the event notice's value.

2) Process activation. Snapshots are issued whenever a process becomes READY, and
again when it begins RUNNING.

(This choice assumes that processes change state infrequently with respect to the
overhead for issuing a snapshot. We could choose to bypass snapshot issuance where
process activation or suspension does not directly interact with the IPS facilities.)

3) Data display requests. The statements of Section 7.DI, by causing posting events, cause
variables to be added to and removed from DATA Scenes. The Post process responds
by adding or removing these variables, then performing a standard update.

We could have implemented posting through subroutines declared in Copilot's outer block.

The scheduler routines and data-display statements would call them to report results. We

have chosen the process/event mechanisms instead, as we have for other facilities, because

this decoupling allows us to embed all system structures and display routines in a block

inaccessible to target programs, attording them protection and name space independence from

each other. In adu:tion, in Section 8.D1, we will show that this structure, with appropriate

segmentation, helps us achieve space efficiency.

6.CI Display of Users' Scenes

The Post process only maintains context Scenes. However, it will update the display of all

Scenes which currently have visible windows, this relieves the user of much of the effort of

displaying his Scenes. He need only maintain the data in the Scene and indicate current

cursor and window positions. He can have his programs issue a Post-only request for

immediate visual response. In this way he can synchronize his data display with the Context

snapshots. Facilities exist as well for directly updating a user-maintained Scene, for better

efficiency.

ICH

„__ ^ .-^ -

uiiuiii.iipiji i nfiipua" mmmn*i<*^mfl*l*mifn**lll****'** WmWW ■i*ii«B.»..MJ|fmiwwÄW-m«iJ , .,i..i,iiiiw»»f^W«m)iMi«pi«ii..]Liiiun

^

CHAPTER 7

COPILOT TERMINAL PRIMITIVES

This "user's manual" chapter explains many of the terminal operations which are built in to

COPILOT It should also serve as a guide for the implementation of additional features.

The first section deals with the user-accessible structures for describing and manipulating

system entities such as Scenes. Regions, and processes. It also defines terminology for these

entities. The following section presents a small number of variables, global to the User and

UCP routines, which are central to system operation.

Section 7.C is a description of the more important primitive system functions, and the

terminal-level commands which use them. The last section defines the semantics of the

special statements of Section 5.C5.

7.A. USER-ACCESSIBLE STRUCTURES

In the previous chapters we prcsenteJ proc?s--control statements which used integer values as

process designators. We did this because the M1SLE language lacks sophisticated data type

facilities. We will extend the use of integer values as structure designators, to handle objects

such as Scenes and Regions. We will also employ them as instruction point, environment

point, and context point indicators (ip, ep. and cp). (t)

A structure designator is always generated by the system, on request. Structure designators

are unique, like LISP atoms or LEAP Items. Associated with each structure is a structure

type code defining what kind of entity it represent:., as well as its actual value-. Scene data, a

process stack, etc.

Some structures (Scenes. Regions, processes) possess string-valued pnames, used to identify

them in Scenes. Whenever such an entity is stored in a named variable, our convention is

that the entity name and variable name should be the same.

(t) In a language which provides structured data facilities, these entities lose their distinction.
105

- ■ - Ml..,

mmamm

mmmmimmmmm —rwi ■jpi mnjummrmmimmmm '«■' "*••'

Instruction, environment, and context points could be represented as <5cene, line, colunin>

triples, where program, data, or dynamic Scenes, respectively, would be selected. For

convenience, however, we have chosen to define structu'-e designators for them, collectively

called structptrs. One can derive from a structptr the <Scene, line, column> position it

defines, as well as the process (if any) associated with it.

Some procedures need the ability to accept as arguments structures of different types. An

example is an editing function, whose Scene argument could be supplied directly as a Scene

structptr, or indirectly by specifying the Region to which the Scene is mapped. Another

example is a structure-following procedure which can be applied to any structptr (see the

successor functions of Section 7.C4). These functions can obtain the structure types of their

parameters, and can perform appropriate conversions, using the access primitives of the next

paragraph. (Scene types are subtypes of the structure type "Scene").

.1

.i

■I

.1

7.AI Access Primitives

From a given structure it is often possible to derive related structures or values: the Scene,

line, and column locations of an ip, the Region corresponding to a Scene, or th« cm i em tin«

and column locations for the edit curse ("A") m a Scene (or Region, if mapped). The

following table defines a set of access (conversion) primitives and the structure types rhey will

accept Legal types are marked "x" in the table; braces surround the entry ("[x]") if the

legality of the function depends on the Scere type of its argument (e.g., an IP can only be

obtained from a program Scene). Each function attempts to return some reasonable default

when the requested value is meaningless (marked "-"), or does not exist.

.1

■j

106 i

kte ---'■ miBiiiiilii—"J--'- ■MViinCinr ■-— —^

■^

•~

Table 7-1. Structure Access (conversion) Primitives

Struct. Type Sce'.ie Region 'P ep cp |)ro<

Function

GET SCENE • X X X X -

GET. REGION X • X X X •

GET LINE X X X X -

GET COLUMN X X X X X •

GET 'P w [x] ■ - - X

GET .UP [xl [x] • - - X

GETXP Ex] [x] - • • X

GET.PROCESS . . X X X .

I
1
:

Ü

I

7.B. GLOBAL STRUCTURE VARIABLES

The variables of Table 7-2 form the bases for access to all IPS structures. They are

declared in the System block (in the «system Scene); they provide access to all Scenes and

Regions, most processes, and some location structures (structptrs). (The primitives for

creating Scenes and Regions cause declarations for the new objects to be inserted

automatically into the System block.)

107

L mmmlmmmmm ~—'—

""""Ul- ""^WW^'IHflPPP ■■l.W^»^P^WP|IU,lll. J ■■ll«J|lll«Bai*M ■VWUlii

RPROG, RDATA. ...

PROG. DATA, DYNA.

CURRENT.REGION

CP

IP

EP

Table 7-1 Global IPS Structure Variables

Structptrs of the initial Regions.

Structptrs of the initial Scenes.

Structptr of the Region, in which the edit cursor ("A") is visible,
and which therefore is affected by edit commands.

Structptr of the current Context Point, seen in the RDYNA
Region as a context cursor ("►").

The Instruction Point selected by CP.

The Environment Point selected by CP.

.!

D
.1

..

7.C. THE COPILOT TERMINAL PRIMITIVES
1

The COPILOT design includes an intermediate mapp.ng between the terminal commands

and the corresponding lengthy primitives. For each command we have defined a command

procedure, whose name is short and at least moderately mi,emonic. which is defined in terms

of one of the primitive functions (supplying the default arguments to it). Each command

proceaure accepts only one or two parameters, those which the user might provide in his

terminal commands.

As an example, the command procedure expansion of the "<rept><cr>" command in Section

7.C2 is "DOWN(<rept>)"; its meaning is, as before,
MMOVEXURSOR(CURRENT_REGION,<rept>,-999,010)".

Although the intermediate command procedures make sequences of IPS statements easier to

read and modify (in the UCP and in assistant procedures, for instance), the extra lev.'l of

mapping does not aid their exposition. In the descriptions which follow, we will directly

express the COPILOT commands in terms of the primitive functions.

108

,;

:i

■

.:

:.

!Ä__- SaMMMMIMtfa^Mi

^WH^WMMMHMOTP ' '•••*' » ■•"■'■■! m u" I! ' '~mm~<

The casual reader need not study the function descriptions in detail; he may scan the calling

sequences and read tne command descriptions to infer their general behavior.

7.C1 Notation

We have arranged the following pages in pairs: even-numbered (left-facing) pages contain

the names, calling sequences, and descriptions of primitive functions. The odd-numbered

(right-facing) pages describe the commands whose expansions use these functions. Some

copies of this dissertation are printed in one side only. The reader may find it convenient to

reverse the even pages in order to accomplish this correspondence.

On the function description pages, when more than one structure type is permitted as a

parameter, the alternatives will appear as [scenelregion]. This example will commonly be

abbreviated [sjr].

The command descriptions employ the following conventions:

The left column, labelled "COMMANDS", lists the commands, with possible parameters,

using the notation of Table 7-3. The middle column, "EXPANSIONS", defines for each

command the M1SLE statement, in terms of the specified parameters, which the User loop

algorithm creates from that command, and which it will cause to be executed. The expanded

statements in this presentation are all calls on primitive functions, using a "keyword

parameter" form: PCALUx-5, y-"abc") means PCALL(5,"abc"), wr.cre the formals used in

declaring PCALL were x and y, respectively. Whenever the procedure name is omitted from

an expansion, the most recently mentioned procedure is intended; whenever a parameter is

missing, the most recently mentioned parameter with the same keyword is intended.

109

- - -

wmm wmmmm*^*** .p.<.,mw,„,,iuii'w«V!ffpir-r mm muRuni IILIIIIIHI^II «1111111 I, |.ML Hill |l IIMH

Table 7-$. COPILOT Command Notation Convention!

The CONTROL key should modify the command character

The META key should be employed

Both CONTROL and META are required

Carriage return

Line Feed

<alt> Alt mode -- a special "escape character"

<vt> Vertical tabulation character

<sp> Space, or Blank, character

<bs> Backspace, or Delete, character

<rept> A numerical repeat factor, composed of a<digit$>

a

a

<cr>

<lf>

110

.1

:i

.]

A

.1

.1

.i

.i

;;

o
,;

D

MM ■Mi MMMMMM - ■ -^ ■ -■

r^tmm^mm'mmmmmmi^'^^mmmmmmmmmmi^mmmimrmmmmmmmmmmmmm^

Q
EDITING COMMANDS

j
7.C2 FUNCTIONS. EXPLANATIONS u

MOVEXURSOR([$cene|region],lines(spaces.windowline)limitflag)

This function moves the edit cursor for the selected Scene a specified distance relative to the
current edit cursor position for this Scene. It also adjusts the position of the window on the
Scene, if it is mapped. • '

[scene| Must be a valid Scene, or
region] the designator for a maoped Region. In the latter case, MOVEXURSOR . 1

applies GET SCENE to select a Scene,
lines Number of text lines to move (positive is "down", negative is "up").
spaces Number of columns to move (♦/-)• ■ <
wmdowhne If limitflag enables it, after determining the new cursor position, arranges the

window such that line I of the window is 'windowline' lines away from the
cursor line (♦/-). Adjusts if necessary so that the cursor is in the window. . i

limitflag
0: Cursor may move beyond current window boundaries, adjust window to make

the cursor visible, if mapped.
I: Cursor may not move beyond current window boundaries.
2; Cursor may move beyond current window boundaries, place window as nearly

as possible to the position indicated by 'winaowline'.
3: Cursor may not move beyond current window boundaries. Update window

after moviiig cursor.

SETXURSOR([scene|region],line,space,windowline)

This function is equivalent to:

MOVE CURSOR(region.-999...9,-999...9,0,2). then
MOVEXURSOR(region,line,space,windowline,2).

In other words, SETXURSOR sets cursor and window to "absolute" positions (relative to
the beginning of the Scene).

FIND_STRING([sccne|region],"srchstr",number)

This always uses GET.LINE(s|r) and GETXOLUMN(s|r) for its position. It searches frjm
that position to the number'th occurrence of the search string, and does a ^ew
SETXURSOR if it finds enough matches. Otherwise, the user is informed that the search
failed, and the edit cursor is not moved.

Preceding page blank

112

0

- — —- ■- -—^ —

; jgB»p^P..MIHMIi JttPilHHP^ilWlMPIl !'l '^^^WIWPpmWf^i^Wq!^^pW.i|ilW I li||ipp.^ltm#WJPJlUlJlM Jltji l^ PW '

^

COMMANDS

<rept><cr>

<rept><vt>

<rept><lf>

<rept><alt>

<rept>a<sp>

<rept>a<b$>

•T

•B

•J

•W

•L

EXPANSIONS

move cursor (
region-current.region,
limitflag-O,
spaces - -999.
lines - <rept>)

lines - - <rept>

spaces - 0
lines - <rept>

lines - <rept>

lines - 0
spaces • <rept>

spaces - -<rept>

limitflag-1
spaces- -999.9
lines - -999.9

lines - 999.9

spaces - 0
lines - 0
windowline ■ line
limitflag - 2 (or 3)

lines - 999...9.
limitflag - 3,
windowline- -999.9,

lines - -999 9.
windowline - 999.9,

<rept>»F<str><cr> find string (
region - current.reglon,
srchstr - "<$tr>",
number ■ <rept>)

113

COMMENTS

Moves edit cursor <rept> lines
vertically, horizontally to left margin.
Cursor may move out of current
window, requiring window
adjustment.

<rept><vt> performs •-<rept><cr>.

Moves edit cursor <rept> lines
vertically, but not horizontally.

<rept><alt> performs »^repixlf;».

Moves cursor <rept> columns
forward, horizontally.

Moves cursor <rept> column
backward.

Moves cursor to top left hand corner
of screen (window).

Moves cursor to bottom left corner.

Moves current line to top of screen,
adjusts window so that the line with
the cursor is line one of the window.

Moves the bottom line to the top of
the Region (if possible), by adjusting
the window.

Moves the top line to the bottom of
the Region, if possible.

Sets the edit cursor to the location of
the <rept>th copy of "str", starting at
the current position.

------ mÜ^^^^^^UA^MUi

m VWW«OTPP>m

EDITING COMMANDS, continued

7.C3 FUNCTIONS. EXPLANATIONS

NEXT.REGION (region, howmany)

There is some reasonable circular ordering among Regions, based on their Screen position.
NEXT REGION yields the Region structptr for the howmany'th region from the one

specified.

EDIT REGION(region. line, space, windowline)

This function selects the specified Region for (terminal) editing. It then performs a
SET CURSOR operation using the remaining parameters. If any parameter is -I it is not
changed from the setting it had the last time this Region was edited. (Region-switching is a
sort of coroutine-switching operation)

CHANGE CHAR([scene|region],line.space."char(s)H.number)

CHANGE CHAR can refer to its Scene directly, or indirectly through its mapped Region.
Its function is to insert, replace, or delete characters from the Scene. The edit cursor is
always placed beyond the affected string on termination of the command.

char A 7-bit character.
number -0: replace current character(s) with 'char(s)'.

>0: insert 'char(s)' before current.
<0: delete |number| characters at current position.

scene, region, line, space as before.

EDIT CHAR([scene|region]. "chai(s)", number) is:

CHANGE.CHAR([scene|iegion]. GET_LINE([scene|region],
GETXOLUMN([s|r]), "char(s)". number)

INSERT LINE ([scene|region], line, string)
DELETE .LINE ([scenelregion], line, count)

The specified string is inserted as a text line before the indicated line. (Or) count lines are
deleted at the indicated line.

.!

.;

.;

.:

.1

,.

.!

J

'I

;1

114

■ ■
■ - —'—-■————-^-^-o—w-.— ..

^mmm "nu MimnmimnmppKi^"^"" iinp IIII.MJI iiii>Mn.viMi neu

fl

D
D

1

D
\ 0

1 fl

I
I
r

COMMANDS

<rept>»R

<arg>«R

<char>

(J<char>

<rept><b$>

<rept>aD

<rept>»<cr>

<rept>»D

EXPANSIONS

edlt_region (
line--l
space - -I
wlndowline - -I
region - next region

(current_reglon,<rept>)

region - <arg>

change.char(
line - get Jine

(current.region),
space - get .column

(current region),
region-current_regioii,
number - 0,
char - "<char>")

char - "<char>"

space ■ cur.. - <rept>
number - -<rept>

space - cur..

space - 999...9
char - <••••...#>
number - I

delete.line (
region - current region
line - get line(current region)
count - <rept>)

115

COMMENTS

Selects for editing the howmany'th
Region from the currently selected
Region. Makes the edit cursor
visible in that Region.

Selects the named region, as above.

<char> Is a 7.blt, non-activating
character. Replaces with it the
character under the edit cursor.

Inserts <char> at the edit cursor.
Move other characters over.

Deletes <rept> characters t(» the left
of the edit cursor.

Deletes <rept> characters to the right
of the eo<: cursor.

Inserts <rept> new lines after the
current one. (• is <cr>).

Deletes <rept> lines.

 —- - - - _ _...*_ ^..i... ^..,—..—. -..

wmmmmmmmm** ™

STRUCTURED EDITING COMMANDS (PROGRAMS, DATA LAYOUTS)

7.C4 FUNCTIONS, EXPLANATIONS

structptr *• GET_STRUCT ([scenelregion], line, space)

In a PROG Scene, finds the closest statement to the specified location, and returns its
structptr. The effect is similar in a DATA Scene, returning the closest equation (next page).

structptr #■ EDIT^STRUCT ([scenelregion])

EDIT .STRUCT([s|r]) is defined as:
GET_STRUCT ([s|r], GETJ,INE([s|r]), GET_SPACE([s|r]))

structptr - NEXT_STRUCTURE (structptrI, "code")

code T Given structptr I (denoted by SC in the following examples),
NEXT.STRUCTURE returns its successor (SN In these examples):

... BEGIN ... SC; SN ... END;

... BEGIN ... BEGIN SC END; SN ...

... IF ... THEN SC ELSE SN; ...

"T" Returns the predecessor to structptr 1. The definition is similar.

V Returns the first substructure of strucptrl, if it has any. Otherwise returns
structptr I: SC is structptr 1, SN the resultant substructure in the following:

... SC: BEGIN SN; ... END; ...

... SC: IF ... THEN SN ELSE ...

... SC: SN; I«-3; ...

V" Returns the "father" structure, SN, to the given structptr I, SC:

... SN: BEGIN SC;... END;

... SN: IF ... THEN SC ELSE ...

"H" Returns a structptr to the block or compound statement containing the given
structptr 1.

,!

11
. 1

I

:i

116 i

-- . -,-._-t-..J - .—.. ^^......*A

1 'w*~^mmmimmmmmm

COMMANDS

•1

•T

•H

EXPANSIONS

struct move (
region - current region,
code - "1")

code - "t"

code - V

code - V

code - ":"

code - "H"

117

COMMENTS

Moves edit cursor to the statement
(or corresp. structure, for other Scene
types), following the stmt. nearest
current the cursor pos.

Moves edit cursor to the statement
preceding the nearest one.

Moves cursor to first nested stmt.

Moves cursor to father stmt.

Moves edit cursor to the statement
nearest its current position.

Moves cursor to block head
containing the nearest statement.

- - .^_

mmmmimmmmmmm' > ''■■"" "*i.im» I III III IIIIHIia.HUIWHIJIII ^wmmmm

PROGRAMS. DATA LAYOUTS (cont)

7.C5 FUNCTIONS. EXPLANATIONS

STRUCT_MOVE (region, "code")

k
STRUCT_MOVE is defined as:

BEGIN
integer stmt;
stmt»-EDIT. STRUCT(region);
if code * H:" then

stmt - NEXT.STRUCTURE (stmt.code);
SETXURSOR (region. GET_LINE(stnit), GET.CÖLUMN(stmt), -I)

END;

118

.1

..I
D
.i

D
.:

.;

D
Ö

.1

A

.!

!

i

-- -- — ■ -

.. .-..^—

' ' Mi.■|PI!,!IP, .^.-M. IM. .-.•!. •P^PwrnP—- (iliP-HUPlLln

APPLICATION OF STRUCT_MOVE TO OTHER SCENE TYPES:

DATA SCENES - Let EC be the equation nearest the edit cursor, EN the equation
identified Ky that cursor after perfoming the command:

•t

•:

3.proc#2(...ECp EN)
3.proc«2(....EC); begin EN;...
EC: 3.proc«2(.); begin ... end; EN:
(inverse of «i)
EC: 3.proc#2(....): begin EN;
(inverse of ♦-•)
EN-EC.

DYNA SCENE - Each number is some instance node- "V means "yields'

I
5

I
6

•i at 1 s 2 »i at 2 3 3
♦i at 4 a 5 «T at 4 a 3
•T at 5 a 2 •-» at 2 3 5
•-» at 5 3 5 •<- at 6 3 2
•♦- at 2 3 2 •«- at 4 3 4
•H at 6 3 5 »H at 4 3 |

119

I
<*««■

i i an—«■wii i , **

,w< .j.,. «,.,.,„ ,, ,„ 111 y^ffmimmmmmm f. mvmmimKmemmmmmrmmmmm^ w^m^mm^^'wmmim i i-*D|

Ü

SCENE MAPPING

7.C6 FUNCTIONS. EXPLANATIONS

scene ♦- SCENEJLINK(t$cene|region]. line, space)

This command follovs Scene links ("• scene" constructs). Given a location within a Scene, it
finds the nearest Scene link, if any, and returns a structptr to the Scene it identifies. If there
are no Scene links, it returns a null structptr. which should be treated as an error or "no-
operation".

MAP-SCENE (scene, region, first line, fspace. fwindow)

This makes the Scene visible within the Region, and sets the window and edit cursor
poitions as specified, using SET .CURSOR.

D
.1
.i

.;

;i

]

120

.i

i

■" • • - - ■ • ■.-.■■-.»- - ^..^jaaa.jM^^^^^, ,.^.. ,, ,

111 ll«111*1

CONfMANDS

•M

<arg>»M

EXPANSIONS

map scene (
scene - scene Jink (

region-current region,
line - cur...,
space - cur...),

region - current_region>

first line - 1,
fspace - I,
fwindow - 1)

scene - <arg>

COMMENTS

Follows the nearest »scene link

Maps the Indicated Scene Into the
current Region (the one with an edit
cursor).

121

UM ■--■ - --'— -

mmßi'i!*'*'''^***^**'^^''^^**'*1'*^

code;
T Single-steps one statement.
"V The same as "4", »f the statement at I«1 has no substatements. Otherwise,

executes to the first encountered substatement (see examples on next page).

Stepp activates the process, at its current IP and EP, first setting Synch variables to suspend
after the desired execution. The V code suspends execution at the first encountered
substatement of the one indicated by IP.

STEPPN (process, n)

122

PROCESS CONTROL

7.C7 FUNCTIONS, EXPLANATIONS U

SET_P (process, [ip|ep|cp])

Places the context cursor at IP if structptr is a statement. EP if it is an instance in a data
Scene, or CP for a dynamic Scene.

STEPP (process, code)

i

.1

i
This is a multiple-step command. If n-2, it executes the next two statements before
suspending; if n-3, the next three, etc. When applied to a statement within n statements of \
the end of a loop statement, n is reduced to prevent executing beyond that scope.

STEPP(—."1"), when applied to a process which is already being stepped, has the effect of
STEPPN(—,n), for n-2. 3,...

(ACTIVATE (process). SUSPEND (process), SUSPALLO)

These are the normal MISLE functions for activating, and suspending processes. SUSPALL .
suspends all but USER.

TOXONTEXT (process) ,

This sets RDYNA, RSTAT, RPROG, and RDATA Regions to the Scenes describing the
context point of the selected process. If -1 is the argument, it alternates among the suspended
Target processes, beginning with the mo:t recently broken one. This is the normal way to
establish context after a BREAK.

Process either -I (some broken process), or a process id.

I i

 - .^.■.T||ii(|||||||ig,M,|||

I
i!

0

Q

I

Q

i

i

D

COMMANDS

•;

•X

<arg>»X

<arg>»S

•S

•P

<arg>«P

{<arg>}«.

•B

<arg>»B

<arg>»^

EXPANSIONS

$et_p(
process - get „process (ep),
edit struct(current region))

stepp (
process ■ get process(ep),
code » "1")

process - <arg>

_1 MM code » -»

process - get proce$s(ep)

activate (
process ■ get.process (ep))

process - <arg>

suspend (get process (ep)),
or <arg>

suspall ()

edit diar(
region - current region
char(s) - "(break

(get^proce$s(ep)))".
number » 1);

process « <arg>

to_context (process ^ -I)

process - <arg>

123

COMMENTS

Moves tht context cursor,
representing an ip, ep, or cp
(depending on Scene type), to the
stmt, equation, or procedure
instance nearest the edit cursor.

Single-steps one stmt. in the p
context cursor is visible (the current
process).

Single-sleps the selected process

"Steps in" to (executes to the first
substmt. of) the current stmt. of the
selected process.

"Steps in" to the current process

Proceeds- readies the current
process.

Readies the selected process.

Stops (suspends) a process.

Stops all processes.

Sets a break point at the edit cursor
pos. Will break only when the
process encountering is the one
which now has the context cursor.

instead of .get_p... Sets a break
point at the edit cursor position and
specifies which process can trigger it.

Switches context Scenes to a
representation of the environ-ment
of some reasonable process (see
previous page).

Switches to the context of the chosen
process.

——

DIRECT STATEMENTS

7.C8 FUNCTIONS. EXPLANATIONS

EVALCstatement". ip. <p)

Effectively, the statement is inserted in the scene at ip. Then it is executed in the
environment (therefore the process) of ep. When the process suspends (on eventual
completion of that full step), the statement and all levels of representation are deleted.

Ü

J

!

I !

124

,!

i

.

.1

.1

.1

J

.!

.!

Ü

i

COMMANDS EXPANSIONS

•!llne<cr> line

COMMENTS

Executes the line as one statement.

•*llne<cr> evalOlne", |p, ep) Evaluates the line in the selected
environment.

125

^^^^^j—-^—^

7.D SEMANTICS OF SPECIAL STATEMENTS

In Section 5.C5, we presented the syntax for a set of MISLE constructs which are especially

useful in an interactive environment. At that time we had not adequately presented the

contexts in which they are useful. Here we will explain these special statements, by means of

several examples.

7.DI Variable Query (Data Display)

Example J; Kt2*S;

A data display statement comprises a single expression. Executing one causes that

expression's value to be displayed in a data Scene. The first statement, above, is

representative of the most common use: the display of a named quantity. The variable J (in

the scope of the current context cursor), is given the marked attribute (Section 5.D2), if it

does not already possess it. this will cause an equation to be created for J, in any data Scenes

which display instances of the block or procedure in which J is declared. Data display

statements execute by causing posting events which awaken the Post process. When this

process runs, it causes all visible data Scenes to be updated- thus displaying J's current

value, among others.

The second example above causes (he selected expression to be displayed temporarily in the

default data Region (see Section 5.HI). It is difficult to formulate a general algorithm for

doing this satisfactorily. We will explore the problem further in Section 9.A2.

7.D2 Breakpoints

Example; BREAK(-1>,

This statement always breaks. To do this, it simply suspends, after causing a POSTmg

event. The post process subsequently indicates in the ST AT Scene that the process has

BROKEN. The user can, when he chooses, turn his attention to the broken process,

examine its causes, then take whatever action is appropriate.

Example: BREAK(TARGI>,

126

.1

.1

;i

.!

D
.:

i

i

D
D

I

-

11
a
i

11

e
D
D
11
11
11
I
I
I
I
I

This statement will break only when the process encountering it is the one designated by

TARGI.

A last BREAK statement, ARR BREAK, takes an array as its parameter, and will break if

the running process is any of those specified in the array.

7.D3 Temporary Statements

Example:

{TEST.SRCH: ON! IF SEARCHXNT MOD 50 .-0 then BREAK(-I)} >PT3(XMT);

A temporary statement of the form { tsl; ts2;... tsn } si is functionally equivalent to BEGIN

tsl; ts2; ... tsn; si END. Similarly. $1 {tsl; ...} behaves as BEGIN si; tsl; ... END. We make

the distinction for three reasons:

1) As a purely visual device. It is easier to see that the statements within the braces are
temporary.

2) To aid in insertion and deletion. One need not find the end of the qualified statement
(e.g., $1) in order to place an END there, or to remove it.

3) To allow the additional <class> and <switch> syntax.

A temporary statement containing the switch "ON" behaves as one without a switch at all: all

its substatements are executed in order, as described above. However, if a temporary

statement contains an "OFF", none of its substatements are executed. One may thus turn a

temporary statement on and off by toggling this execution switch. Section 8.E8 presents an

implementation for this feature which allows inactive (OFF) temporary statements to be left

in a program, at no execution cost.

The class label need not be unique to one temporary statement. If a set of temporary

statements exists, whose collective function is to monitor a particular situation, one may give

them all the same class name. He may then use the TURN ON and TURN OFF statements

to toggle all members of a class simultaneously. Class names are global labels, whose scope is

the entire system.

127

- -- —--"—— — • ■

The DELETE statement physically removes all statements labelled by a given class name

from the Scenes they modify.

Temporary statements give us nearly all the power of Teltelman's ADVISE facilities for

BBN Lisp, which allow a user to change temporanly the meaning of a function, whether

compiled or interpreted, whether defined by the system or user. We cannot provide his

selective advising facility in the current design. (When this is specified, a function Is

modified by its advice only when called from one of a selected list of functions.)

7.E. CONCLUSIONS

We have presented in this chapter only the essentials of COPILOT. We are convinced that

this design provides the basis for many elegant capabilities which are not possible in a

preemptive system, or in one which presents less context. Some suggested extensions to

COPILOT appear in Chapter 9. Others will require further research.

u
.1

.1

.1

I
. I

u

.1

,1

0

128

..... , --■ *^ ^^ ■" ^ -^

II
il

ii

D
!

I

D
D
D
D
D
D

I

CHAPTER 8

IMPLEMENTATION CONSIDERATIONS

8 A. TIERS

We have intentionally couched all our descriptions in terms of the Text Scenes which the

COPILOT user can see directly. We have demonstrated that we can provide a remarkably

rich set of primitives for IPS control in these terms.

To provide the facilities described in the previous chapters, we require, in addition to the

Text Scenes, the support of additional structures. We can see clear evidence of the kinds of

structures required in the following:

1) We need the Text itself, for visual display and text operations.

2) We need to locate the Tokens, within a text line, which begin selected statements, as, for
instance, in the EDIT STRUCT(...) (•:) command. Some internal representation of
program text as lists of Tokens would be useful, though not absolutely necessary.

3) We need access to the program structure, or abstract syntax tree [38], of the user's
program, m order to perform operations like STRUCT_MOVE (•-♦, »i, etc), and
process control operations. Similarly, we need a structured representation of the names
In the user's program (a symbol table), closely related to the program tree.

4) Because we have chosen a compiler-oriented system, each statement m each PROG
Scene must have a corresponding code segment which, when run on the host machine,
will perform the specified actions. Conversely, the data (activation records) on which
these segments operate may be reflected in DATA Scenes at the text level.

We will call these levels of data representation Tiers. These same four kinds of Tiers (text,

token, tree, and code) exist for most of the Context Scenes in COPILOT. We will treat each

use in detail below. Each Tier is the most convenient representation of the facts it expresses

for some class of system operations.

8 Al Tier Equivalence

For each Tiered quantity in the system there is a source Tier, where new information is

129

MLM ; -

J

introduced. For programs, this is the text Tier, where new statements are added. For data,

the code Tier (of activation records) usually supplies the needed information. The contents

of each Tier (other than the source Tier) is the byproduct of some translation operation. For

programs, these operations have familiar names:

NAME TRANSLATION (Tier 1 to Tier 2)

Scanning

Parsing

Compiling

Text to Token

Token to Tree

Tree to Code

For data representations, we could speak of Uncompiling, Unparsing, and Unscanning,

beginning with activation records in the Code Tier, yielding readable Data Language

"programs".

In each case the intent is to create a representation which is In some sense equivalent to the

original; that is. Its meaning with respect to some set of attributes is invariant over the

translation. (For compiling, this Is the requirement of correctness. Most formal treatments of

compiler correctness concentrate on proving thi» "equivalence" between the abstract syntax

(Tree Tier) and the Code (Code Tier) [39].) In order for the translation to have any value,

of course, there must be other attributes which are not invariant: some information will be

lost, while other things will be added. Using our program example again, the scanning and

parsing operations do not carry program format (spacing, etc.), into the Tree Tier, nor do

they always preserve the order of expressions, or even the precise choice of keywords and

operators. In addition, through these translations, explicit structural information about a

program is added. Further compilation (to code) usually loses some of this structural

information, and much symbolic data, while gaining efficient code for execution.

We will say that structures in two Tiers are weakly equivalent, or simply equivalent, if they

satisfy (or presume to satisfy it)) specified correctness criteria for a selected set of attributes.

We will say that two Tiers are strongly equivalent i(either can be completely regenerated,

given the other.

{%) We shall not offer any proofs.
130

]
.1
A

.1
Q

y

i

— - _ .--.. ^........ _...-^

1
D
ii
Q
D
D
Ü

D
Ü

There must be, for each class of multi-Tiered entities, and for each adjacent pair of Tiers, a

translation rule (algorithm), operating in at least one direction, which will convert from one

Tier to the other. Compilers, parsers, and scanners are elements of this set of translators.

8.A2 Inter-Tier Connections

The data of two equivalent Tiers need not be fully independent. Each may contain

references to locations or entities in the other. It must be possible, for instance, to find the

statement in the Code Tier corresponding to a given node in the program tree.

This division of IPS structures into Tiers and connections between Tiers allows us similarly

to segment the universe of IPS system routines into those which deal with the relationships

between "adjacent" Tiers, (compilers, etc., as well as routines like GET .STRUCT and

GET .LINE), and those whose effects are confined to a single Tier (e.g., MOVEXURSOR

and STRUCT.MOVE).

We will find that it is useful in some Tiers to minimize the number of extra-Tier connections,

while other Tiers will contain numerous connections to their neighbors. We will discuss the

advantages and drawbacks to this imbalance in Section 8.D.

D
::

8.A3 Tier Fidelity

In his thesis [44], Mitchell states what he calls a Visual Fidelity Principle, which requires

that "the user must be able to expect that the appearance (text) of a program is a reliable

indication of the way that program acts (its semantics)." While this is predominantly a

restatement of our Tier equivalence requirements, it carries some additional implications.

Program Tiers are not always equivalent; there is a time after new text has been inserted in

a program, but before it has been translated, when they are not. If we use the Visual

Fidelity Principle as our guide, we require only that Tier equivalence between text and tree

be restored before doing any structured editing, and that tree and code Tiers be updated

before attempting execution of the modified algorithm. We can extend this notion of fidelity

to other translations, specifying for each the conditions which require that necessary

translations be made. For instance, code-»tree-»...-»text translations, for data, dynamic, and

status information, must occur whenever a posting event (Section 6.C) occurs; and our

Snapshot requirement (Section 5.B4) means that all such translations must be done whenever

131

-- - , ^ . -i-" — i i ■——

any is done. (The Snapshot requirement states that the visible data must represent a subset

of total system state at a single previous instant.)

8.B SCENE-TIER RELATIONSHIP

In the previous chapters we have developed two mechanisms for storing, naming, and

manipulating the data structures in our IPS: Scenes, for managing the text that presents

elements of the system to its user; and Tiers, for relating this text to its underlying structures.

In this section we will consider thr relationship between these mechanisms.

.1

.1
Ö

We will define the specific conditions for each COPILOT translation in the following

sections. These conditions may be different in other IPS systems, depending on the methods

of translation and interpretation.

8.A4 Tiers in other Systems

The Tier concept is our attempt to normalize the naming conventions for the kinds of

structures which have been developed for IPSs (and other language systems), including

COPILOT. All of the systems we reviewed in Section 3, for Instance, have constructs

corresponding to the Text Tier; most possess representations corresponding to one or more of

our other Tiers: JOSS maintains text only. Most LISP systems keep the trees (S-expressions)

and, for compiled functions, the code. Mitchell's system has representations at each Tier

level. We are satisfied with the generality of the Tier levels we have chosen, since we have

encountered no trouble in categorizing the structures of other systems in terms of these Tiers.

.!

.1

J

Ü .

ül
Ü

.!

i

For each COPILOT program Scene in the text Tier there is a directly corresponding

collection of token lists in the Token Tier, equivalent to it. Similarly, for each of these

collections there exists an identifiable set of equivalent (*) instruction segments in the code

Tier. It would be tempting to extend this observation, and to state that each Context Scene

can be considered a multi-Tier structure, with disjoint equivalent representations In each

Tier (Figure 8-1). This technique, however, immediately leads to trouble in the tree Tier.

Since the information in a data Scene represents data generated from the algorithms of

(*) Always in the weak sense

132

- —

ii

D
program Scenes, one must expect this relationship to be expressed at some level, through

shared structures. The natural place for this sharing is the tree Tier. In COPILOT (Figure

8-2. and Figure 8-3). the tree structures which express data Scene information share

symbol table nodes with the program trees; from these symbol nodes, block structure

information from the program tree itself is available.

Another difficulty with the disjoint structure of Figure 8-1 is that many data Scenes may

exist at once, for many simultaneous instances of the same procedure. These occurrences

place a many to one relationship between some Text Scenes and some elements of their

equivalent representations. Notice that not even data Scenes and their code Tier information

need be in one to one correspondence, since the same information can appear in more than

one data Scene.

Because of these arguments, we will relax our proposed Scene-Tier requirements, demanding

only that.

1) An observer with access to all system data can derive from a quantity in one Tier all
equivalent quantities (I-1 or 1-many) in all other Tiers.

2) Where necessary, direct or computable connections exist between Tiers to allow
programs to derive the equivalent entities. Not all possible connections need be
derivable

D
D
D
;:

i

8.Bi Permanent Scene Representation

For each type of Scene, one or more Tiers contain the most complete information about that

Scene. From that Tier, all other representations can be generated. The source Tier (the one

into which new information can be introduced) must be one such Tier.

133

■ - --MIM -—— -- — _ ^ .

We designate one of these Tiers as the Permanent Tier for each Scene type. We can then

choose to maintain equivalent information in the other Tiers only when it is necessary. The

permanent Tiers for each context Scene are:

SCENE TYPE SOURCE PERMANENT

PROG Tree Token

DATA Code Code

DYNA Code Code

STAT Code Code

.1
1
:

i

Examples: data, status, and dynamic text Scenes are not needed at all for non-interactive

system operation. Thus it is possible never to generate Token or Text level information for

them at all, as long as the code and trees exist for regenerating them. In COPILOT,

program Scenes need only exist in the text Tier when they are mapped to Regions, or when a

text-oriented function needs to look at it. We maintain all programs permanently in the

strongly equivalent Token Tier (see Section 8.C2).

While a user is logged in, COPILOT maintains his program representations for all Tiers.

To save space, we could choose to delete Code and Tree information when the user leaves

the system. This information would be regenerated when he next logged in, returning his

system to the state it was in when he left. Notice that, although there are multiple

representations for a given program, they all represent the same algorithm, maintaining the

illusion that there is but one representation- text Scenes- within the system for a user's

program.

.:

134

 - --■ -——■

1
]
ä
ä
D
D
D
D
D
D
D
D
Q

D
:;

i
i

PROG DATA, DATA 2 DYNA STAT

TEXT TEXT TEXT TEXT TEXT

tt If If i k i i

PROG DATA, DATA 2

TOKENS TOKENS TOKENS

\ t t '

PROG DATA, DATA2 DYNA

TREES TREES TREES TREE

If "1
PROG DATA, DATA 2 DYNA STAT

CODE CODE CODE CODE
(?)

CODE
(?)

PROG
TEXT

> ^

PROG

TOKENS

E

Figure 8-1. (Inadequate) View of Scene/Tier Structure»

DATA 2
TEXT

SYMBOL

PROG
TABLE

TREES

L-I

n
DYNA

TEXT

DATA 2

TOKENS

^ f

.r

■L

/ ^

DATA 2

TREES

PROG

CODE

\l

I r

"V
1 L

DYNA

TREE

-- DATA2

CODE
TO DATA, CODE

TO DATA2 CODE

Tq_PROG TREE

TOJSYMBOL TABLE
TO DATA, TREE

Figure 8-2. Interconnected COPILOT Scenes

135

 ■■■ " ._._ i^iMMMuuAdAMiidÜi

mumm» m.mmm*mimm^mmt*m*^*m^ wmmmmmmmi^^mmmmmm

1
II
11
11
11
il

D
D
!!

::

Q

:;

:

I»

i
i

PROCEDURE P3 (INTEGER PARAM);

BEGIN

INTEGER I.J.K;

l*-J*K;

END;

SCENE ITEM

TARG 3.P3 #1 (PARAM^OO)-,

BEGIN

1=1540;

K=-3

END-,

TEXT

SCENE ITEM
TOKEN

BEGIN PROC
SON O: TEMPLATE

FROM
O^NA
TREE

RELOCATABLE
INSTRUCTION

SEGMENTS

OTHER
SEGMENTS

PROGRAM TIERS

TREE

FROM
DYNA
TREE

DATA TIERS

Figure 8-3. Overall View of COPILOT Tier Structures (part I)

l?7

wmmmmtmammm iqr*'^*^*^*m^mm*mm*mm***m mjmrmmmm^^m

i
2
3
4
5
6
7

: 8

USER COPILOT #1

I TARG3.PI#I

1
TA^G 3.PI #2

I
TARG3.P3#I

TEXT

NO TOKEN TIER NECESSARY

" USER COPILOT # I "

TOKEN

"USER"

SPROUTED BY TREE

^

PROC
NAME

TARG 3

O
&

&

> TCALLED BY „
m rTARG3.P3#l

LEX LINKS
X

DATA FOR
CALLED

INSTANCES
IN UCP

DATA FOR

USER COPILOT#i
INSTANCE

DATA FOR OTHER
PROCEDURE
INSTANCES

IN MAIN
PROCESS

LEX LINKS
LEXICAL LINKS

DATA FOR
Pl#l

DATA FOR
Pl#2

DATA FOR
P3#l

CODE

ct
UJ

ÜJ
Q
O
o
o

UJ
cr

DATA FOR
ANOTHER
PROCESS

INSTATIATING
PI

UCP STACK MAIN PROCESS
STACK

TARG 3 STACK TARG 4 STACK

:i

::

. i

!

i

Figure 8-4. Overall View of COPILOT Tier Structures (part 2)

l?S

■ -

^^^^^^^^mKm^m^^mmmmiwmm^mmm i m^mmmmm^^t*m*^^mmimmimnmmimmmm*mm

I

\

8.Ci Text Tier

We have exhaustively described this level. Its implementation is straightforward, providing

for the storage, insertion, deletion, and replacement of lines of text. For convenience in

implementing the user-level routines, these structures may be indexed by tine and character

number. Each line in the text Scene contains a reference to the LEAP item, in the token

Tier, which represents that line.

8.C2 Token Tier

The output of a language processor's lexical scanner is a sequence of tokens, internal

representations of the language symbols. In most languages, including MISLE, many

program symbols are members of the relatively small set of terminal symbols, and the rest are

Identifiers and constants chosen from a relatively small number of declaration instances.

Therefore, by proper encoding, an expression of the program in terms of these tokens may be

smaller than its t-xt representation, depending on the implementation and the user's identifier

naming style. Its chief advantages, however, are the Increased parsing speed when sections of

the text must be recompiled, and the additional structure which can be maintained in token

lists (see Section 8.A). For these reasons we have chosen the token Tier as the permanent

Tier for programs. To do this, we must achieve strong equivalence by adding format

information, chiefly to specify where spacing characters were present in the original. Figure

8-5 exhibits a section of the token Tier for the accompanying program. The Scene at this

level is a two-way threaded chain of line items, each of whose datums is the token list and

spacing information describing the line. Linked to each line item is an index into the text

Scene for that line.

We have taken advantage of the discreet nature of token lists to insert connections to the tree

Tier, so that statement nodes may Oe located (by CET_STRUCT(...), fjr instance). These

frsmrk items (see Figure 8-5) are distinguishable from token entries. Tieir datums contain

indices to aid (along with FIRST and LAST links) the inverse tree-to-token conversions.

We will introduce some additional Token structures in Section 8.E2, when w« discuss the

storage and parsing of program modifications.

139

- ^

i«111"1'!« I"1" ■l"" mimmmmmm****™*^*^' > ' IWIII.I

FROM TOKEN --♦ I BEGIN

FR0MT0KEN—*2 INTEGER i,j; (LEVEL I)
3]«-3,i«-]«3*5;

4 BEGIN

5 INTEGER i.k; (LEVEL la)

6 k«-j-5;i«-k«fn(j)*7;

7 IF i<j*l THEN... ELSE...

8 END;

FROM TOKEN--* 9 j*-.*2

FROM TOKEN-* 10 END;

TO LINE I
IN TEXT

FURTHER IDENT
INFO

n INTEGER)

'FRSMRKITEM

FROM
TREE

I I

FIRST a:

irwwia
SPACING INFO

<-> 3' <••>

I HI snirBr@~Br
«-> il' <•> 3' <♦> 5' <.>

±
<END>

.1

.1

0
.t

.;

:i

:i

ii

Figure 8-5 COPILOT Program Text and Token Tier»

HO

- ---■- — - --

'"I"'11 ■l"»111 'H '■"l ■■«"' mmmmmmmmmmmmm w^^

I

8.CS Tree Tier

This is the central data structure of the IPS. Program trees are the product of parsing

operations ([36], [44]). Other tree Tier structures (data, status, dynamic) are derived

from code-level information. The program tree of Figure 8-6 represents a fragment of the

programs of the previous figures. It implements n-ary trees, where n is sometimes fixed ("IF

<be> THEN <s> ELSE <s>", n-3), sometimes variable ("BEGIN <s>;... <s> END", n-n). The

trees are connected by leftmost-son, next-brother linkages [31]. The tree is pruned, after

compilation, to include only the statement structure and lists of identifiers and function calls

which appear in each statement. Although this limits the amount of resolution we can

achieve in program control and in recompilation to statement units, it does not seem to us a

great problem in view of the gain in compactness, especially for long, complex operations.

■

1

141

 ^^.^^t. ^»^^ -

Vviiiwi«Mn*qnmpp«!iuuiii.wBa u u iMum0mmm*m*mmmm^mr~m*'m***m**vmmmmmmmm*m9*m*iw*m ill|llii|l|li|Wl I

CODE
SEGMENTS

INSTRUCTIONS

.!

.1

.i

D
Ü

i

,.

.1

D
l

i

Figure 8-6. COPILOT Program Tree Tier

- -*- -■ — i «I^I ■«

PMM^^W. ■Wipil U ■^-■-T III IIJ ,,^ ""Wi^^iWiPpii MPPWPiPiiii ■PHPI ■"-" ■■»">'i"jp»

8.C4 The Symbol Table

We have placed the symbol table (t) in the tree Tier, because of its close ties to the program

trees. Links from symbol entries to the block and procedure nodes In this tree def.ne the

scope (range of access) of the instances of a given name.

F gure 8-7 contains a program tree, pruned of all but block structure detail. The symbol

entries are accessible in a variety of ways:

1) As terminal program tree nodes. The compiler follows the SEMIS connections to these
entries to generate access or calling sequences for data and procedures.

2) By their point of declaration. Any local variable or formal parameter can be reached
from the node for the block or procedure containing its declaration. The same links,
followed backward, allow identification of the scope of a given entity.

3) Symbolically. There is a unique name item in COPILOT for each identifier name.
Linked to it by SYM links are all the entities (symbol items) with that name. In most
of the applications we have described, environmental information (in the form of block
or procedure nodes) is then used to choose the correct entity for the current scop;.

Symbol table quantities, though all their connections are in the tree Tier, are really multi-

Tier entities. Identifiers in the token Tier lists are actually symbol items. Additionally,

symbol items appear in generated code, to identify procedures on the stack, and to select

variables for display.

(f) The use of "table" is historical, since our actual structures are hardly tabular.
14b

....^..^^■^—^ B

jpv.<\ iiiiiivii jni^n.iKiiiuiiji nojMpp^^^ jLuuj(wi>i|«aiip(P«ippMpiP' .«pi'i.i mm''*^mimmmmmm •"^I

1 BEGIN (LEVEL 1)
2 INTEGER i,j;
3 BEGIN (LEVEL la)
4 INTEGER i,k;
5
6 END;
7 BEGIN (LEVEL lb)
8 INTEGER i.m;
3 •••

10 END
ii END;

BEGIN -- LEVEL 1

FROM
PROGRAM

TREE

Klo

[PNAME- V] W

.!

.1
D

D

SYM SYM v y V y
[PNAME-- "I" J ^^f MAliE--"^] ^PNAME-V]

Figure 8-7. COPILOT Symbol Table Organiiatiou

Mi

 mm ■ ■ —-

lun«" in i i«nwpmT>iiW"<w ip w •n*n^imtpmmmi1IB^*T* wmmm u.mmw Mm^mmmmmmmmmt^mm^mm '—^--"'^a

■

8.C5 Other Trees

Figures 8-3 and 8-4 are examples of tree Tier structures underlying data and dynamic Scenes.

There is one tree structure for the dynamic Scene, and one for each current data Scene.

These trees are heavily connected to their "templates" in the program tree- algorithmic and

symbolic information. This sharing of structure reduces the amount of tree Tier Information

which must be maintained for non-program Scenes.

In Chapter 7 we introduced entities called structptrs. produced by access primitives such as

GET IP and CET_EP1 to provide compact representations for statements, data

environments. Scenes, etc. In the COPILOT implementation, these structptrs are integer

representations for the items forming tree nodes, token Tier entities. Scene and Region items.

Extending MISLE to include the entire implementation language (SAIL) would eliminate this

conversion, allowing structptrs to be directly represented as items.

8.C6 Code Tier

Since COPILOT is a compiler-based system, the most important (least dispensable) product

of program translation is the set of machine instructions comprising the code Tier for

programs. However, most aspects of code generation do not bear heavily on our IPS

considerations. Consequently, we shall not discuss code generation techniques as such. (*) We

will be content to list the requirements and constraints which our generated code satisfies, in

order to interface properly with the IPS and process facilities.

I. The code is organized as segments, built around the statement structure, which can be

independently replaced. Major control points, labelled statements, procedures, and blocks

always begin segments. Segments are limited in size, so that recompilation of still-correct

statements in replaced segments will be acceptably infrequent. The compiler routines control

the replacement, insertion and deletion of code, always in segment units.

it) We might suggest Gr.es's book. Compiler Comtruction for Di6it.l CompuUrt [23], as *n
excellent reference for all aspects of compilation.

145

MM^^M ■MMM - I mmmmmm^tm ^__
^- -■ ■ - --

\mmmijmwv™'i^i'-mm!pimmm*mm%mmimmmmmmmmmimm'iw ' i'*~m*^m*mmmmmmimfm>mK.uimiuimmmmi*mm**mmm*rr'Tmmm

2. Code segments are relocatable. A segment can be moved in order to compact storage, or to

accommodate the expansion of other storage blocks. We have chosen to make all but a small

number of header instructions in each segment address-independent. The header words

contain transfer instructions which link each segment to the segments which precede and

follow it in the execution sequence, and to the segments which implement its substatements.

The base address of a running segment is available in a machine register to allow relative

transfers of control within the segment. Other registers provide data access. Transfers to

other segments from within a segment are performed by transferring to instructions in the

segment header. When a segment is moved, only the header instructions in those segments

which link to it must change. We can locate these other segments by referring to the tree

Tier structures, which contain complete segment location information.

3. To allow program modifications, we can delete and insert arbitrary code Segments. Given

our relocation facilities, this is rot hard The tree Tier contains a complete description of the

segment structure of the Code Tier. After a new segment or set of segments has been created,

after header instructions have been inserted to link them together, and after the segments to

be deleted have been identified (see Section 8.E5), it is then easy to modify the relocation

routines to treat the new Segments as relocated versions of the old ones.

4. We insert synchronization instructions in the code, to denote points where process-

rescheduling interrupts may take effect; so-called "clean points". These synchronization

instructions also provide a mechanism for controlling Stepp, Break and data display

operations.

b.C7 Synchronization

We have chosen to use the statement as our gram of resolution for synchronization. This is

evident in the primitives of Chapter 7, where control is available down to the statement level.

(*)

Within the data for each process, we allocate a variable, which we call a synch cell, for each

code segment which can operate in that process. A synch cell, normally zero, may be set by

(«) We may also gain control at orocedure calls wi'.hn a statement.
146

.1

.1

.!

i

 ^

1 « u"1"»" u wmmmmm mmmmmam ' •i»-tWV'V.*

1
1
I
I
I
I
I
I

■
I
I

system functions to request suspension of code running In the corresponding segment; the

value placed in the cell indicates the reason for suspension, and also identifies the statement(s)

within the segment for which the synchronization request is intended. This latter value is

necessary because we sometimes compile several statements into one segment.

The initial instruction of code for each MISLE statement implements a synch test, which

tests the corresponding synch cell for a non-iero value. If the test falls, execution of the body

of the statement contmucv

The second instruction of each statement is a routine call, or synch trap. This call is

executed when the synch test succeeds. An argument to the call Is a structptr to the tree Tier

node corresponding to the trapping statement.

The synch routine, called by the synch trap Instruction, is a small procedure in the global

environment of all COPILOT processes. If the synch cell value indicates that the trapping

statement should actually trap (is not simply a "segment-mate" of the intended statement), the

synch routine collects, the current process structptr (from a global variable), a structptr to the

tree Tier node which identifies the procedure which trapped (from the current activation

record, see Figure 8-8), the statement node structptr provided in the call, and the value of

the synch variable. It then causes an event, whose value contains the collected information.

The event is either a keyboard event, if the process is becoming inactive to allow the User

loop to run, or a posting event, if the deactivation is due to a Stepp, Break, Suspend,

Terminate, or data display request. Having caused the synchronization event, the process

may suspend, depending on the reason for the trap. The following paragraphs treat each

trapping reason in more detail

I) When the user types a character which the User process needs to react to, the resulting
machine interrupt triggers a small procedure in the global environment. This interrupt
procedure sets the synch cell for the next statement to be executed in the RUNNING
process; the currenf-segment machine register which allows intra-segment control
transfers also allows this routine to find the right segment. The interrupt procedure
then releases the interrupt, allowing the program to run to the next synch test, which
must trap. The synch routine causes a keyboard event, but does not suspend the
trapping process, which therefore goes from RUNNING to READY, in deference to the
higher-priority User process. The User process awakens at Readallne (see Section 6.B1),
where it had been waiting for a keyboard event.

147

■- ■

mmmmm*— —

2) The Stepp function operates by setting the synch cells for all possible successors to the

chosen statement (its immediate successor, as well as the successors of all its

substatements. if they leave the range of the chosen statement). It then activates the

selected process. When that process traps at one of the successor statements, the trap

routine causes a posting event and suspends the stepped process, which will not run

again until some other process restarts it.

3) A Break statement contains only the synch test and synch trap instructions. The synch
cell for a segment containing a Break statement is always set, for the process selected by

the argument to Break (all processes, if that argument is -I). Otherwise, a broken

process behaves as a stepped one.

4) Whenever a RUNNING or READY process is suspended by a Suspend or Terminate
call, the process-suspension primitive causes a posting event. The subsequent behavior
is quite similar to that for Stepp. The only difference is the reason code in the synch

cell.

We could eliminate the overhead of the synch test and trap operations by employing code-

replacement techniques. We could temporarily replace the first instructions of a selected

statement with a synch trap, then simulate their behavior when the process next ran. The

trap instruction would be removed, and the originals replaced, when the trap condition no

longer obtained. We are wary, however, of any technique which requires modification of the

compiled code (t) for its operation, and have avoided it here. In Chapter 9 we will consider

the extent to which specialized hardware can improve synchronization operations,

eliminating the in-line instructions without code modification techniques.

.1

.1

.1

Figure 8-8 demonstrates the general structure of the code Tier. Code Items, whose datums

are code segments, form the interface between the program code and program tree Tiers.

Additional information in the datum of each statement node locates that statement within its

(first) Segment This figure also sketches the storage organization for process data in the code

Tier Each process uses a stick «sisy for storage of its activation records (frames) and

temporary values. Each activation record contains a procedure node referent, and linki. to

static and dynamic ancestors. This structure is dictated more by the requirements of the

language than those of the IPS.

Although we have drawn them as the lowest Tiers of a multi-Tiered structure, in reality all

the data in the system, implementing all Tiers, reside in, or are accessed through, references

(j) Except, of course, in response to changes in the source text.
148

0

.

wm I,"I,IW mmmmm »!•. ■W mmmmmmm

D
D
il

li
1!
ii
il

11

il

D
D
D
li
D
11

in activation records of system processes within the code Tier. It is the special nature of this

data, possessing references to information outside the normal lexical scope of the code

possessing it, which allows us to circumvent control and environmental scope rules, in

controlled fashion, to perform our complex IPS functions.

I
I
T

149

mmm mmmmm^^ wwnwmmmmmmmmm*mmm*mmmmmm .■■•VHW >P

CODEv 70 TREES
T^v LOCATE
V^SEGMEMT

SEGBASE

FROft» |
DYNA TRi^E,

TO STACK BASE

HEADER INFORMATION

bJ
2
u
I-
g
V)

SYNCH TEST, SKIP FALSE

CALL SYNCH ROUTINE

(INTERNAL JUMPS RELATIVE .
V TO SEGBASE •

TEST fCALL
i

(ARGUMENT IS STATEMENT ITEM)

H
Z
Ui
2

\

-JUMPS TO OTHER

SEGMENTS INDIRECT
THROUGH HEADER

ACTIVATION
RECORD OF
SPROUTED-»-

PROCEDURE

LOCATES
STATEMENT
^IN TREE

y
V! FROM BASE

OF SPROUTED,/
PROCESS STACK

EP
IN CODE TIER_
(MAINTAINED

IN INDEX
REGISTER)

i
I

PROCESS DATA - - SAVED ID
STATE, INTERVAL REGISTERS,

WHILE SUSPENDED

TO AR OF SPROUTER

PROCESS ID IN DYNA TREE

S1ATIC (LEXICAL) PARENT

DYNAMIC LINK =</)

RETURN ADDRESS = ^

PARAMETER AND LOCAL

PROCEDURE ID(NODE) IN PROG

STATIC LINK
ui
III
m

DYNAMIC LINK —P»-
o
o RETURN ADDRESS

PARAMETERS AND LOCALS

PROCEDURE NODE ID

ui
UI
(T

<
Z
>-
Q

O

I

.1

.i

.i

.i

.!

J

j

i

.i

D
,1

I

Figur« 8-8. COPILOT Program and Data Code Tiers

150

mm am _^^^^^^^i-^-l^ito^ 1-'"'-'-a"— - -

8D. SELECTIVE EFFICIENCY

I
:

D
::

;:

:

i

When IPS facilities are not active, we would like our target processes to run nearly as fast,

and occupy nearly as little space, as they would if :he interactive facilities did not exist. This

requirement discourages extensive interaction between our compiled code and other Tiers,

either to maintain them or to gain information from them. Our description of the

COPILOT code Tier has reflected this paucity of code-to-tree connections; references in the

code Tier are restricted to tree node structptrs. in synch trap calling sequences, and In the

activation records for procedures; the compiled code makes no use of them except in the

synch routine sequences described in the previous section.

We also have reason to minimize text Tier information;

1) All text Scenes are subject to the same set of text-oriented editing operations. An
abundance of structural connections to the more specific underlying Tiers could interfere
with the implementation of these commands

2) Displaying text is often a costly operation. In most display systems, such simple
activities as moving the Scene window, or inserting a line require the regeneration and
transfer of large amounts of information. The complexity of the Text Scenes cou'.d
adversely affect this cost.

The Token and Text Tiers, therefore, must provide the inter-Tier connections missing from

the other two.

Text
I A
I I
i I

Token

I
▼

Tree
I T
I I
v I
Code

Figure 8-9 Selective Connectivity

151

.1

0
Wf pay for the selective efficiency we have gained in our outer Tiers with a corresponding

loss m the inner ones, and in the operations which use and maintain these inner Tiers. tl

Perhaps the greatest price is the increased difficulty of maintaining equivalence between the

Tiers As a running program modifies its environment (its data and control components),

information in corresponding sections of higher Tiers becomes incorrect. When a snapshot is

finally taken, updating these Tiers costs much more than constant maintenance would have

cost We present our maintenance methods below, in Section 8.E. it)

The interconnections between entities within the same Tier are also sparse for the outer

Tiers No more links are maintained in the code Tier than are needed to support the

operation of the code There is but one link per line in the text Tier Any outer Tier

operation which requires additional structure can find the corresponding tree node, follow

appropriate tree Tier links to the desired structure, then return to the corresponding point in

the original Tier No power is lost; again, we sacrifice only time efficiency

.!

8.D1 Space Efficiency

Figure 8-4. exhibiting the "cactus stack" nature of MISLE processes, is a logical diagram of

the structure of the computer memory while COPILOT is running. A contiguous data stack

is allocated for each process, then linkages are created to establish the connections needed for

normal references to lexically available names, in the stack of the sprouting process.

Additional references (not shown) in the stacks for IPS processes provide the structured

references to elements in all stacks which are needed for the Tier implementations we have

presented Program code figments possess a similar logical organization, although this is

simplified because there is but one instance of the code for each procedure.

While a target process runs, only its code, its stack and those of processes In its lexical scope,

the structures accessed through these stacks, and the global system routines need be present in

memory until that process next suspends We could accomplish this isolation in COPILOT

by maintaining physical, as well as logical, separation of the code Tier segments from other

elements of the system Although the current implementation does not do this, we have

designed all our structures with this separation in mind Nowhere do we depend on physical

proximity, of any pair of Tiers, or of the code segments for any pair of processes.

(%) This analysis would almost certainly be different for an interpretive system.
152

-----—■- - -- . .

i
ü
ii
ii

D
ii
i!
D
I!

:,

i
i

Fortunately, th« hardware and operating systems of runy modern computers provide

facilities for memory management, sharing, and protection which make it easy for us to

implement this isolation. Figure 8-10 depicts the way in which the COPILOT

implementation might be achieved in the MULTICS [43] system. Figure 8-11 is a

possible solution for TENF,X [5], which runs on a modified PDF-10. Both provide,

through their memory management policies, the complete withdrawal of recently unused

pages of information to inexpensive secondary storage, enhancing the Target process's

performance. (Both figures assume a familiarity with the memory management '«cillties of

these systems).

For systems whose memory structures are less sophisticated, the isolation properties can be

simulated using either of these designs as a guide.

153

.. ■; .. .

V)

.UJ

9 _UJ

gi-i

(0
UJ

tn OK
UJ

IP
S

S
Y
S
T
E
M

C
O
D
E
 23

w
UJ IP

S
DA
TA

IN
CL

UD
I

S
T
R
U
C
T

K
UJ

H

.:

.1
en
en
UJ laS -i
o OUJZ < <
cc 2»-- ai-
Q. 2wt

o>-2
o<
-1 Q

UJ owO o
if) U (E
<
CD

/

H H / V)
UJ UIUJ UJ<

/ V) OQ «t;
uui 58
^o H H
a:©

Po.

>
cr
o

UJ

. i

I I

1J
2 ZUJ
UJ UJ_,
H Zo
> UJ>-

M

o

»I UJ ±
KO:
o
o:
a

Figure 8-10. Proposed Memory Organiiauon for COPILOT Iniplemenied in MULTICS

IM

Mmmtmm *mmm

il
11
D
D
ü

D
ii

1;

i
i
i

i

V7Z//

SHARED
CODE

TARGET
CODE

SHARED
DATA

7 TZZL z
TARGET

DATA

TARGET PROCESS
PAGE MAP

OWNERSHIP

BASE PROCESS

COMMON
SYSTEM

ROUTINES

GLOBAL
DATA

SHARED
CODE

TARGET
PROCESSES

I
I
I IPS
I PROCESSES

TARGET
CODE

TARGET
DATA

IPS
SYSTEM

CODE

IPS
DATA

INCLUDING
TIER

STRUCTURES
 ^

SYSTEM (IPS)
CODE

IPS DATA
INCLUDING TIER
STRUCTURES

AREA FOR
MAPPING TARGET

CODE
AREA FOR

MAPPING TARGET
DATA

MEMORY
SYSTEM PROCESSES

PAGE MAP

Figure ••II. Proposed Memory Organiiation for COPILOT Implemented in TENEX

155

- -- - - ._.

.:
8.E. PARSING AND COMPILING

It is implicit in the COPILOT design that incremental changes to the text of programs must

result in changes to the other Tiers. The translation, to be acceptably efficient, must mmimiie

the replacement of information which is still correct; it must make corresponding incremental

changes to the lower Tiers The Visual Fidelity Principle (Section 8.A3) determines the

maximum allowable delay between changes to text and the initiation of the corresponding

translations. We could perform them more often, but do not, since by waiting we are often

able to simplify the translation, and to make more changes at once.

We can not offer significant contributions to the incremental compilation area. We will,

however, indicate the methods we have used in the COPILOT prototype, and hopefully

reveal any insights we have gained in the process.

8.EI Parsing Methods

Lindstrom [35] defines an increment u a string of program elements (tokens) delimited by

tokens from a distinguished increment set of terminal symbcis (eg, "Begin". "End", and ";").

He demonstrates that to limit parsing operations to the replacement of complete Increments,

rather than arbitrarily chosen strings, considerably reduces the complexity of an incremental

parser

We suspect that most parsing methods would survive the modification to incremental

operation Mitchell used a top-down approach, namely Tree-Meta [16]. Lindstrom, in a

very promising approach to the subject, adapted the LR(k) algorithm of Knuth [30] for

the purpose. We have chosen to use the variant of the Floyd-Evans production language

parser (see references [22], [20], and [52]), which we developed for SAIL. Although

we currently reparse and recompile only complete procedures, we believe that the flexibility of

the production language technique would allow us to recreate a parse state which would

accept less restrictive increments, and to merge the results into the old program trees. For the

remainder of this section, we shall stipulate the existence of an adequate incremental parser

156

.

u
We consider Mitchell's thesis to be the most comprehensive on the subject of incremental

compilation For additional treatments see [35], [36], [37], [53], [50], [28], and

[58]

.i

.;

T

I
11
A

ii
D
D
D

:

D
Q

and compiler, which can at least replace any sequence of complete statements, at the same

block level.

8.E2 Detection of Increments

In order to identify which program increments need retranslation, we must keep track of text

Scene changes as they occur. We must also relate these changes to the old program structure,

for it is through study of the old structure that we can decide how to incorporate the new.

Figure 8-12 depicts an extension to our token Tier structures, which allows us to maintain

the needed update records. By following OLDLINE links, or NEXTLINE links whenever

Ol DLINE links do not exist, we can recreate the original Scene. By following NEXTLINE

links only, we obtain the current state of the Scene. There are no "'"oken lists for new lines,

since I o token-scanning operations have yet been applied to them.

We will define a suspect procedure as one which will need to be processed by the parser and

compiler before it is next executed, because it may contain invalid trees and/or invalid code.

For each set of changed lines, we must mark as suspect the tree node for the procedure

containing the lines. Because they may be invalidated by the change, we must also mark as

suspect all subprocedures of a suspect procedure. We attach to each suspect procedure a set of

references to the changed areas within its body. This algorithm guarantees that all

procedures containing changes will be marked, and will therefore not escape the eventual

attention of the parser.

-

157

OTHER
CHANGES

CHANGES

CHANGES CHANGES
.SCENE ITEM ^ T^SCENE ITEM

NEXTLINE

TOKENS

NEXTLINE

TOKENS

DELETED
LINES

NEXTLINE

TOKENS

NEXTLINE

6
«

6 6

.1

i

.:

!

. .

;

o. DELETED LINES b. INSERTED LINES c. REPLACED LINES

Figure 8 12 Additional Token Tier Structure to Record Source Change»

IM

M.._ ■ ^

1

i

i

i

8.E3 Timing of Parse Events

There are possible advantages to parsing new Text Scene changes as they occur. Perhaps

the most evident is that we could detect errors quickly, and notify the user of their nature.

Continuous parsing would also allow us to prompt the user, continuously disp'aylng the

"menu" of legal successors to the last input (see, for instance, [24]). In addition, continuous

parsing would make it easier to maintain tree equivalence.

n

We would prefer to apply continuous pr.rsing methods. Since the above problems are

unsolved, however, we have not employed them. In.tead, we delay parsing operations as long

as possible, parsing only when not doing so would mean executing obsolete code. This allows

the parser to expect that program changes are grammatically complete and correct when it

parses them, or to be justified in seeking human aid if they are not.

Our methods for marking suspect procedures ensures that, if we operate the parser at the

times specified in the following paragraphs, the system will never execute incorrect code, nor

exa.Time any incorrect data during structured editing operations.

The parser must be called:

1) Whenever a process activates (whether sprouted or resumed) if the procedure to be run

is suspect. This includes any change in state to RUNNING, from SUSPENDED,

STEPPED, ..., or READY

2) Whenever a procedure is called, if it is suspect.

(«) See, for instance, Lmdsfrom [35].
159

There are also drawbacks to continuous parsing. The known methods for parking

incomplete program fragments either place undue restrictions on program composition (the

relationship between line and statement boundaries, conventions concerning line numbers,

etc.), or could not cope with the COPILOT compiled-code environment. We could also

expect the continuous operation to be far les; efficient, for not only must the routines for

performing these translations be constantly active (incurring switching and "swapping" or

"paging" overhead), but they must also maintain multiple parsing possibilities during the

times when, because it is incomplete, the program is ambiguous. (*)

.!

i
3) Whenever a jtructured editing operation is performed, if the procedure containing the

indicated point is suspect (this covers operations which place the IP for a process into

uncompiled regions).

Since the compilation operations can only occur when no other processes are RUNNING,

case (I) above should be sufficient to guarantee that no incorrect code will be executed.

However, by adding case (2), we do not have to compile all changes each time, but need only

ensure that everything which can be reached without either suspending, or calling a

procedure, is correct. Thus, for example, UCP changes, required for the User loop operation,

can be compiled without attempting the translation of change being made to other Scenes by

these UCP statements • i

Placing the compiler in the activation path between processes allows a simplification of the

User algorithm. We may now remove the Compil step from line 3 of the program in Section

6.B3, and from the corresponding lines of subsequent examples, since the compiler will put

things right during the Stepp activation on the following line.

8.E4 Process Structure

We have chosen to implement the parsing algorithm as an independent process, with access

to all system structures. This gives it a particularly clean interface between the system and

target processes. This process, the Parse process, is nested in the same system block which

owns the Post and UCP processes. It runs at a priority between that of Posf and UCP.

The Parse process, when not active, is suspended waiting for a parse event to occur. We can

best consider what happens by considering the following cases;

1) The User process inserts a statement into the UCP Scene, then executes Stepp. Stepp,

while activating the UCP at the new statement, causes a p3,r$e event. Because of the

User process's priority, no further action occurs until it again suspends at Readaline.

Then the Parse process activates, preparing the new statement for execution before it, in

turn, suspends and allows the UCP process to run.

2) When a parse event is caused during a procedure call, or before a structured editing
operation, the Parse process gams control immediately, due to its priority. Because of

this event-driven operation, an instance of parser execution is invisible, except for a

time-delay, to the normal control transfers between processes and procedures.

160

__

¥
D
■■ 8.E5 The Parse Process

p We will assume that, given a changed group of lines, our parser is capable of incrementally

U translating them (perhaps combining these changes with other nearby or related changes.)

Here we will outline our procedure for applying this parser to a particular instance. The

parameter to the parser is always the tree Tier node fof z suspect procedure.

ii

ii

Q
D
;

;:

i
T

The parsing process:

1) Examines, starting with the given procedure, all static ancestors (father first), yielding
the outermost suspect procedure, (t)

2) Determines, using the old tree and token lists, in conjunction with the modified lines, a
range of tokens and text to reparse.

3) Performs the parsing operations in lexical order, so that declaration changes will occur
before the statements affected by them are encountered, it)

4) Deletes old Token lists and linkages as they become useless. For each replaced or

deleted tree node, the parser deletes the tree structures, subnode structures, and code
Segments for it.

5) Invalidates (see [44]) those tree nodes whose code is now nonexistent or incorrect.

The parser marks as invalid all new nodes, and all their lexical parents, terminating in
each case with the outermost suspect procedure.

6) Handles changes to block structure or declarations. This demands special treatment,

since the effects of these changes are distributed over a range of program statements

which might otherwise remain correct. Mitchell's design offers clear solutions to the

problems which arise from declaration changes. For each detected identifier deletion,
insertion, or attribute change, we mark as invalid any program tree node which uses

that identifier We must also invalidate all the ancestors of an invalidated node,
terminating at the block or procedure containing the innermost current declaration for
the identifier Although we use the associative facilities of SAIL to perform this search,
its operation is analogous to searching Mitchell's dependency lists for the modified
entities.

(t) Since all subprocedures of a suspect procedure are also suspect, this determines the
maximum range of current changes which could possibly impair correct operation of the code up
to the next procedure call or process rescheduling operation.

it) This assumes that we require an identifier to be declared lexically ahead of its first use,
even m a procedure nested within the same block. This is not a requirement of Algol 60. If we
relax this restriction, the parsing job becomes somewhat more complex.

161

The parser must sometimes decide to recompile statements whose code is still correct. For

mstance. since we only replace complete code segments, unchanged statements residing tn the

same segment with a modified statement must also be recompiled. Unfortunately, not enough

«nfoi mat.on about a statement remains in the pruned tree to allow the compiler to generate

HPW code (see Section 8.C3). so we must arrange to recreate the full tree by ^parsing the

token lists which specify it. This is not difficult, for we know both that the mcrement to be

recompiled is syntactically correct, and that it already fits correctly into the surrounding

structure.

8.E6 Compiling: When and How

We need not necessarily compile the incremental tree Tier changes as they are made, as long

as the ultimate behavior satisfies the Visual Fidelity Principle. Previous systems have

handled this in different ways The simplest are those, like most LISPs. which can either

.nterpret or compile their functions, accommodating both forms in the same program

environment. In these systems, the user chooses the compilation time for each function; the

only operational effect of compiling is to enhance speed and siie characteristics.

Mitchell's system compiles code at Me last possible moment, applying what he calls a Tree

Factored Interpreter (TFI) to the tree structures (he parses changes immediately, on a line by

line basis). A tree-structured interpreter, much like I ISP's, is applied recursively to the

program tree. Each program node inherits the code compiled for its subnode;. then has

instructions of its own added .0 the inherited code. The code for a node is executed just

after it is created. Thus interpretation is factored into a control component, which follows

the tree structures, and an execution/interpretation component, which interprets the algorithm

(by compiling and running machine code)

In Mitchell's system, nodes are validated by compilation, and invalidated during parsing,

using the methods described above (Section 8.E5). When the interpreter returns to a still

valid node, it can execute the previously compiled code. This policy, recursively applied,

means that only truly incorrect code need be replaced.

Mitchell's method requires IPS (interpreter) intervention at very frequent intervals, perhaps

at every statement, even when executing correct code. We could perform last-mmute

compilation in COPILOT by using synchronuation techniques, similar to those we have

162

Ö

■•^ - ' - - -■■ ■ — - ■* —•■

I
I
I
I
:;

D
D

i!

..

D

described (see Section 8.C7), tc suspend in favor of compiler processes at the necessary

intervals.

However, if each transfer of process control caused minimum code recompilation, we could

expect an inordinate, probably unacceptable amount of process-switching to occur after even

minor changes. We could partially avoid these problems by making some reaionable

decisions each time about how much to compile.

At present, as we have seen, we restrict parsing events to times whose rarity would nullify any

benefits of such selective and frequent compilation. In particular, we will seldom parse a

change until just before the code It represents is scheduled for execution. We are therefore

content to synchronize compilation with parsing events. After all changes have been parsed

for the outermost suspect proce ure (which will by the preceding constructions be invalid)

we apply a TFI compilation algorithm, similar to Mitchell's, to the updated parse tree for

that procedure, without executing the code segments we compile. (*)

A final compilation task is to insert the resultant code segments into the code tier, and to

correctly link these segments to the surrounding code

8.E7 Modifying Active Code

When the user (or any other agent) suspends ope-ition of a process, then modifies the

program in a way which affects code in any active procedure within that process, to maintain

correct program behavior requires special treatment The IP location might have to be

repaired, for instance. If a procedure is changed so that it no longer calls some active

procedure, or calls it fron a different place, the return label needs to be modified.

Modifications to declarations often require substantial changes to the data environment.

Mitchell discusses this problem at length in his thesis. He presents an algorithm, called

REVERT, which can restore a legal state wheiever control transfers (by subroutine return,

the only possible time) to a modified context.

We have not given this matter the same exhaustive analysis for COPILOT. In the

(*) Normally, Mitchell's TFI compilec onl" those nodes which it «ctually executes (for instance, it
would compile only the selecter" alternative of an IF statement, leaving the other until it was
selected.) He does provide modes, however, for compiling jll nodes in such constructs, when
desired. This is the algorithm we are using.

163

■M _ MM^MMi^Mte - - ---

prototype, the COPILOT user occasionally has to help reestablish a correct environment by

direct editing of PROG, DATA, and DYNA Scenes. See Chapter 9 for thoughts on a more

satisfactory facility.

8.E8 CompiSing Temporary Statements

Temporary staiements. when ON. are functionally indistinguishable frr.r any other

statements. When OFF. they are equivalent to null statements: they Save no effect at all.

Without the temporary statement facilities, the user could achieve most of the same effects by

inserting conditional statement« at selected program points. These statements would test

variables used in place of our class identifiers, to determine whether or not to perform the

operations.

We demonstrated in Section 7.D3 that the enhanced syntax for temporary statements

constitutes a user convenience. It can benefit efficiency, as well When a temporary statement

is OFF, its code need not exist. The compiler can choose, while "in the vicinity", to delete any

segments owned by inactive temporary statements. The expense of the recompilation

required to turn such statements back ON Is offset by the ability to leave potentially useful

debugging or monitoring statements permanently in a program, without execution cost.

.1

J

.:

I

j

D

i

164

I

,__.

um mm ■ • ni .i i..>.. '«^mnanpa ■■n^^^""1 1"« ■ "' ■ ■■■l ■ »'■ "^WPW ^ ■ w

I
I
I
i
:

:

;:

::

:

CHAPTER 9

SHORT SUBJECTS

In this concluding chapter, wp wish to treat several topics

1) Some facilities whose descriptions may be better understood In light of the

implementation information of Chapter 8
2) Uriolved problems, some with partial solutions We have mentioned most of these in

previous chapters
3) Possible extensions to COPILOT, made possible by the basic design

The topics to be discussed do lot fall neatly into single categories of any of the attribute

spectra we have distussed They are therefore simply presented as separate discussions, with

no significance attached to their order of appearance

9 A ADDITIONAL COPILOT SUBJECTS

9.Al User Programs in the System Environment- Assistant Procedures

We have not mentioned this subject since Section 4.A3, when we briefly stated that the user

could write assistant procedures to perform repetitive terminal operations in his stead,

eliminating the need for a special "macro" facility

We need neither additional structure nor additional commands to provide this ability The

system skeleton of Figure 6-1, in fact, has a provision for such programs The aassistaiits

entry in that example indicates where Scenes containing special user procedures can be

placed, that Scene need not be called "assistants", nor is there a limit to one such Scene

The global variables described in Chapter 7, which the terminal primitives use for their

operations, form part of the environment of the assistant procedures It is therefore possible,

by construction, for an assir nt procedure to do anything which the user ran do in a single

terminal operation By combining several terminal primitives with normal language

constructs- loops, conditionals, etc - one can achieve much more complex actions

Typically, the user will directly execute an assistant procedur;, by typing, for example.

165

-— I—

"'PROC(pl. .pn)" The PROC call will execute in the UCP process environment. It should,

like any UCP executed statement, be written to complete quickly, or invoke another process if

the operation might take lo. ger than a few seconds

The behavior of the system under sequential application of some primitives, particularly

process-activation functions like Stepp, depends on the time intervals between successive calls,

since an activated subprocess may or may not have suspended when called upon to do

something else Although this condition is present in the operation of the Uier-UCP

processes, effecting the interpretation of user "type-ahead" (t), it is particularly troublesome in

assistant procedures We will discuss the problem further in Section 9 B2

...

9.A2 Display of (unnamed) Expressions

We have heretofore considered the display, in DATA Scenes, of named entities only (e.g..

variables) We would like to attach a meaning to the general data display statement which,

in the syntax, allows us to select arbitrary expressions for display Our current solution is to

treat such expressions specially, adding the computed value to the current variable data

Scene, for one snapshot only, using the name "<temp>" to identify it Unless explicitly

renewed, this entire entry cuappears during generation of the next snapshot

A better solution (but much more expensive) would require that we attach to the data tree

no^e for an expression's equation a reference to that expression's node in the program tree

The expression would be re-evaluated, in the correct environment, during each snapshot

update, until the proper environment no longer existed, or until the user explicitly deleted the

equation from the Text Tier In this caie the text representation of the expression itself

would be used to name it (eg, "A.F(JM - W"), so that multiple simultaneous expressions

could be maintained

Another data display feature is provided as a convenience The stepping (»X. »S) operations

are useless unless the user can see something of the results of executing a stat'.-ment He can.

of course, explicitly select variables for display. I ut the necessity to do this can be irritating,

particularly in those cases when what he probably wants is clear A few situations are very

clear after stepping the execution of an assignment statement, one would like to know the

..

(f) The presentation of rvew commands taster than they are processed
166

"mmmw**^** 1 I I

value of iny afftcted variables, or when execution suspends, just prior to execution of a FOR

loop's controlled statement, the value of the continuing variable U irly always of interest.

The Post process spontaneously adds variables ro the appropriate data Scene, whenever a

process suspends after "stepping" a statement which changed but one variable The variable

is not, however, marked for continuous display The effect is to display this variable during

one snapshot only, unless data display statements nave previously selected it.

We could extend this facility to more complex statements (e.g., complete blocks or compound

statements), but we would, in each case, have to balance the added visual context this

achieves against the danger of flooding the data Scene with too much information.

n

■■

-

9.A3 Operations on the UCP Scene

Since the User and UCP Scenes are ordinary Scenes, they should submit to user modification

through text-editing operations, particularly because such modifications could be quite useful,

permitting the user to tailor his system However, in practice, such operations could yield

unpredictable results, some of which are detailed below We must therefore place limits on

what can be done, in order to protect the integrity of the system We would also like to

provide alternate facilities with equivalent power

Any IPS which treats either the programs implementing the system or the history of user

commands as user-accessible entries must tackle these same problems Teitelmar. encountered

some of (hem while implementing his BBN-Lisp facilities, he gives a lucid description of the

results in [55] We share with him the belief that many of these operations are useful

enough that we should not prohibit them entirely We have therefore introduced the

following restrictions

1) We will permit no direct changes to the programs implementing the User loop, the Post

process, or the parser/compiler processes (but see Section 9C3 for ways to obtain the
same effect) This preserves the integrity of the basic system operation

2) We will permit no changes to the UCP Scene which alter the basic outer structure (that
of a procedure whose body is a compound statement) In addition, we will allow no
insertions of text into the UCP Scene below the current IP for that Scene, except by the
User process

3) Only the User process may control the activation of the UCP process, or th- placement
of its IP

167

11 " <mmm -——"- ■"■■""
,lp '■

1 '« •l"" VÜUVMII

These latter requirements assure that the normal, sequential application of user commands

will not be impeded by user modifications to the UCP.

Let us briefly consider what the user might want to ach^ve by direct operations on the UCP

Scene Perhaps most obvious, and most difficult to achieve in light of the above restrictions,

is repetition of previous commands A conceptually easy way to achieve this would be to

map the UCP Scene to a visible Region, to point the edit cursor at a previous statement, and

to single-step the execution of that statement To re-execute a series of commands. (ne would

surround a range of previous statements by BEGIN - END bracket:, and step the execution

of the resulting compound statement

The problem with this technique is restriction (3) above, the IP-modification and STEPP

operations implied by the above scenario are not allowed- to allow them would destroy the

integrity of our interactive control The solution is quite simple: it costs little to create an

additional process, which we might call UCPI, as another nstance of the UCP procedure.

As a separate process. UCPI possesses an independent executior. state (1P.EP). its operation

will not interfere with the operation of the UCP process. Process control operations on

UCPI may be performed in a manner no different from the control of any other process.

For convenience, we may devise explicit commands for the most common UCPI transactions.

An example would be a command whose effect is similar to Teitelman's redo operation it).

repeating the action of a very recent statement

The UCP Scene is a rich source of material for constructing assistant procedures, as well.

Text-copying operations, which we have not shown, make this job easy. By embedding

selected UCP statements within conditional and repetitive statements, a user can create quite

sophisticated sequences As an example, having constructed and executed a sequence of

commands to test the performance of a new procedure, he could create an assistant procedure

to perform the same sequence, for a range of parameter values, using the sta^ments from the

UCP to avoid reconstruction of the repeated text One could, similarly, create another

assistant procedure to perform a complex sequence of text editing operations, then apply it to

a range of lines

:.

.,

it) st« [53] or [55]
168

"-""" 1 " ■' wm mmmm ~-~ mum 1 ' "UlillMII.M.II.

II
i
]

i
i

:.

:

:

:

;:

::

;:

i

i

i
i

9B PROBLEMS

9.B1 A UCP Scene Problem

If we use algorithm A. B. or C of Chapter 6. the UCP Scene will contain a complete record

of recent terminal commands However, algorithm D, which introduces the notion of

selective interpretation, also introduces a potential problem In algorithm D it is not always

necessaiy to insert a statement string into the UCP in order to achieve that statement's effect;

that statement may instead be executed dir^tly. The UCP history will therefore be

incomplete, rendering impossible automatic duplication of recent actions. A safe, although

expensive, solution :s to insert each expansion into the UCP Scene whether it is used or not.

We could often increase efficiency by summarizing in the UCP Scene a sequence of actions

(for instance, cursor-moving operations) by a smaller number of statements. appropri?.tely

parameterized We do not have a more satisfactory solution to this problem.

9.B2 Type Ahead Problems

In Section 6.B3 we discovered a drawback to the decoupled control achieved in the

User/UCP design execution of one command will supersede that of a previous one if it is

typed before that previous command completes operation This behavior is necessary if we

are to etain non-pre#mptive control over errant UCP statements. However, it is not the only

possible treatment of type-ahead Ojr cilices are

1) To cause new statements to supersede old ones, as above

2) To ignjre statements completed while the UCP is active

3) To qutue new statements behind the executing ones, suspending the UCP only when

none remain to run (the normal behavior of Stepp when applied to a process which is
already stepping)

We must immediately reject (2) as a solution, because ir is completely unresponsive to the

user's n.-eds When affairs are progressing normally, in fact, (3) is the proper course,

performing all user commands in order Finally, as we have stated, we need to be able to

obtain the behavior of method (I)

No one has ever, to our knowledge, successfully resolved this conflict between the desire to be

able to type ahead, and the desire to bo able to abort previous operations We can offer no

169

—

'—mmmam-^m^^i^i^mmim* . n ■ ■ «■. i . n i m

i

complete solution here, but can at least offer a method which makes both the above

acceptable methods explicitly possible. To do it, we have further modified the User

algorithm, dividing the set of terminal commands into two classes. Each kind is expanded,

inserted, and compiled as usual When the UCP is inactive, both kinds behave identically.

When it is active, however, there is a type-ahead SI:I ation. For elements of one class, we

apply method (3), queueing the statements for eventual execution. We do it by bypassing the

suspend statement of Algorithm C in Section 6.B3. Elements of the other we arrange to

execute immediately, using method (I). We can now remove most of the commands of

Chapter 7 from this latter, imniediate, class and place them into the more orderly queued

class.

9.B3 Data Scene Flickering

We mentioned this problem before, in Section 5HI It does not arise when we are

examining the state of a suspended process, either looking at previously selected values, or

adding new ones via directly entered data display statements However, consider a visible

DATA Scene, D, which is monitoring a running process, P, where P's code contains several

data display statements It is possible that these statements are being executed often,

generating a large number of snapshots in a short time In this case, the value field for the

equation of a displayed variable which is changing between each snapshot will become an

unreadable blur (hopefully, otherwise the system is not fast enough) We are not concerned

by this, though, for that blur is in itself useful information

170

.i

D Heretofore we have really needed only one command (V<statement $tring><cr>M) to perform

any terminal operation: all others could be defined in terms of this one. Let us place this

command into the queued c v,5. We now need a command which will execute a statement

immediately: let us use "•?<statemen': $tring><cr>" for that one. To abort the current UCP

operation, the user need type only "•?<cr>", which instantly terminates the current UCP

statement in order to execute the null statement. To suspend all non-system processes

immediately (a good idea in a crisis), one could type "•?SUSPALL()<cr>H
1 or. ideally, a

specially-designed CALL key which would expand to "SUSPALLO"

Having executed an immediate command, one could retry any or all of the interrupted

statements using redo or something like it.

..

,

}

M ir^i ■ ii mM*\m* ■ i

mmmm ■ wmmmm ~~ mm

However, if these data display statements are scattered among several procedures, all defined

within P and alternately called from within it. a far more serious "flicker" develops within D.

It occurs because the variables for ;wo disjoint procedures cannot appear simultaneously

within D, even if both are simultaneously active. Even worse, if no action is taken to prevent

it, the equations for each will alto-'ately occupy the same positions within the Scene. If these

transitions occur frequently enough, the result is not only chaotic, but unmterpretable.

If the user has enough display area, he can minimue this problem by creating several fixed

Scenes (see Section 5HI), thus distributing the equations to fixed positions. With the

relaxation of the snapshot requirement which we described .1 that section, these Scenes

shouhi be fairly well behaved However, we have no general soiu'.on to the problem, when

it appears in the variable Scenes Its effect could be reduced if tne Post process were to apply

heuristic guides to the placement of equations within variable Scenes.

::

::

9.B4 Data Monitoring

Data monitoring, or tracing, operations have always been a popular method of program

debugging For interactive systems, such a facility usually allows one to select a set of

variables to monitor, specifying for each whether he is interested in every reference to it, or is

only interested in store operations which change its value. The occurrence of such an event

can cause the current value to be printed or displayed, can cause a "program break", or can

invoke some user-specified action.

We may distinguish between facilities provided by translators (eg, compilers), and those

provided by the "virtual machine": the hardware and the IPS software We have

concentrated most of our efforts on the latter, assuming as well that we can control only the

IPS software The structure of the virtual machine determines the category into which

continuous monitoring operations fall If the hardware provides a way to interrupt when

selected events occur to selected memory locations, or if the system is interpreter-based,

monitoring may be handled as an IPS facility. Otherwise it is something which must be

handled by the translator In COPILOT, this would involve the recompilation of large

amounts of code v henever the monitoring attribute changed for a given variable We feel

that, although we must accommodate explicit changes to identlf.er declarations, any other

facility which requires for its operation such widespread replacement of program code is

unacceptably inefficient. ar>d should be avoided The implementor willing to pay this price

171

tmmj

mmmmmmmmmmmmmmmmmmk ummppF^^iP"*^« ■ ■

could do so, by treating inonitoring as a declaration attribute, and by depending on the

Incremental compiler to lind and replace the necessary references

If our hardware possessed the ability to monitor individual variables, genera.ing an interrupt

or simulating a procedure call whenever one of them changed, our atUiude would be much

different Monitoring would become an PS facility, well within our domain Our data

display algorithm would respond readily to the netded modifications for displaying

contmously correct data values; and the process/event structures could provide more

sophisticated monitoring operations, including the so-called "continuously evaluating

expression" discussed by Kay [28] and Fisher [21]

The synch test and synch trap calls used to effect our process-control primitives are also

translator-dependent, so our avoidance of such facilities is not completely consistent. In this

case, since we always general this synch code, massive changes need not be made to install

and remove it CM occasion. We have had to accept the additional overhead this method

causes as unavoidable Again, the addition of hardware memory facilities, which would

generate the appropriate exception conditions when control passed to selected instructions,

would virtually eliminate the synchronization overhead.

Several machines possess adequate memory monitoring facilities for a hardware

implementation of these features

9.B5 Restoration of Active Context

This is the problem of restoring the control and data environment of an active procedure,

after its algorithm has been changed We mention it here for completeness We have

already described the problem and our progress in this area in Section 8E7; that solutions

exist for similar systems, but we have not yet succeeded in applying them to COPILOT.

Ü

a

172

 MMk-.t. ■ ■ "

wiimmm^^*^***^*****^*' ^■iMi^',,"v*a"mw'imam« immm^*—^—~*~ im w ■■'*™~*^*mmmmmm

m

9C EXTENSIONS

I

9.CI Environment Modification by DYNA Sceiif Editing

We have demonstrated the usefulness of structured pointing operations, applied to all the

context Scenes, for selecting and communicating environmei.tal information. We have

similarly shown that one can modify this environment by suitable modifications to profram

and data Scenes. We would like to consider here what we could accomplish by allowing

controlled modification to the dynamic Scene

We would, as usual, limit the kinds of operations wf would allow Any changes which did

nor make sense would be repaired, perhaps by ignoring the changes For this reason, the

user would usually choose to "have the system make them", by calling specific primitives (e.g.,

Sprout), rather than use the general editing facilities, which would remain available for

activities unanticipated by the designers

We would provide a translator which would reflect, in the lower Tiers, controlled dynamic

Scene changes of the following nature

1) By deleting entries in the dynamic Scene one could "unwind the stack" of a process,
perhaps returning the environment to an earlier state, or removing intermediate

procedure instances (whatever that might mean)

2) ' adding legal procedure instances, one could insert omitted procedure calls into the

Mve environment, after correcting the omission in the code, or he could construct test

environments ^ee also Section &D4) Default values would be assumed for variables in
the new activation records, until explicitly overridden by additional user or program

operations

?) Mo-e importantly, by specifying that an entire process branch be copied, suitably
renamed, and inserted into the dynamic tree, one could accomplish a sort of a posteriori
process sprouting Such a duplication could be useful when uebuggmg, since it would

implement what amounts to a checkpoint to which one could later return One would
run one of the duplicates for a while, then either terminate it and run the other

(possibly modified) one, or terminate the second process if the first were successful. This

is a facility similar to the one proposed by Lindstrom in [35]

4) Similarly (for symmetry) one could delete an entire process branch in the dyna tree, thus
terminating the process Directly terminating the process (using the Terminate primitive)

would have the same effect

173

■■

m ■ ■" ' ■ ■ ■"" '■ iiMiimji niiiimi i

9.C2 Scene Branching

in the COPILOT system as defined in chapters 5 through 7, there is but one copy, within

ti:h Tier, of the code for any given program segment; thus, the user need never perform

leduiidanl modifications, nur is there danger that changes will be left out of the "permanent"

copy of the program text («) There u, however, a danger that he will make a change to the

text which is difficult to reverse, especially during early development Let us consider some

of the kinds of things one would like to do during these early stages

(«; The token Tier is the permanent representation of his programs. It is retained when the
user is not "logged in", eliminating the need for separate "source files".

174

.1

J

0
0

1) Try out proposed changes, without committing himself to them; try out several different
versions of the same change

2) Add new, independent program segments individually, eliminating any possibility of
interference by other untested elements.

?) Merge several independent changes after each has been tested, resolving any conflicts
between them »I

We already possess the means for ^-'atmg a section of program for independen:

consideration: the nes:ed program Scene The user can accomplish something similar to the

operations in the above list, using the existing facilities By copying a Scene's data into a

new Scene, making the necessary modifications, and replacing the •<scene> reference which

includes it in the program, he can achieve the redundancy needed for all the above

capabilities

We could significantly increase the convenience and efficiency of these operations, however, if

we were to extend the syntax for Scenes and Scene references to include something like Scene

arrays, whose interpretation is shown in Figure 9-1. By editing SUPERSCN, or by

executing a special command, the user could switch alternatives at will. The major benefits

to this approach could be derived from proper implementation For instance, all elements of

uiie Scene array could share common token, tree, and code Tier representations (see 9-2 and

9-3) where possible, diverging only where they differed. The currently selected index (in

the Scene link) would determine the accessible code segment.' for each divergent program

increment The data structures required for the other features would make the merger

operations (item 3, above) quite simple As a final example, because they would be

inexpensive, one could retain several old "versions" of each Scene, for documentation or

safety purposes.

Ö

— IBMM I

IP mmmm ■ ■ ^W^P^^WP^- mumtmmmmi'mmmmmmmmmmmwmmmmi

I

I

D
D
D
D
D
::

i
i

SUPERSCN

PROCEDURE SRCH;
BEGIN

Figure 9-1. User's View of Scene Branching

175

SCN[I]

•'^f~^mmmmmimmmmmm~*^~^m^mmm^mi****wwmmmmsmmmm^^**m^*m

SCN[«]ITEM

TOKEN TIER

.1

.1

0

BEGIN'

CONNECTIONS TO
TOKEN TIER, ETC.

TREE TIER

/

CONNECTION TO CODL TIER, ETC.
\

Figure 9-2. Efficient Scene Brandling linpleinentation (Token. Tree)

176

,

rp"",m,"w "" ■
•mw-m '^mmmmmmmmmmimmmmmpwmmmmmmmmrmmi****^^

ll

1!

li

ii

D
D
ii

D
D
D
D
D
:.

:

I
I
I
I

JUMP

JUMP

SEG Ctl SEG [2] SEG [3] SEG [il

Figure 9-3. Efficient Scene Branching Iniplemenution (Code)

177

9.C3 Modifying the User Loop

We have explicitly forbidden direct changes to the code implementing the User loop, and

other critical system processes. We do not mean to prevent the user from designing his own;

we simply want to ensure that the transition to a new algorithm is orderly and correct. We

have already described an alternative for manipulations of the UCP, in Section 9.A3. The

branching facility just described could be used to allow User loop modification. If the "«user"

Scene link in Figure 6-1 were instead a link to an element of an array of User Scenes, the

user could create a new element of this array, copy the old User algorithm to it, and make

selected modifications. He would then call a special system primitive to switch from tie old

algorithm to the new, within the same User process, or, alternately, to create a new process

and switch keyboard control to it.

We could also provide new primitives for customizing the User loop command structure bv

changing, adding, or deleting the expansion strings for selected commana characters.

9.C4 Display of Structured Data

Current data Scenes can manage only scalar values. Thus, while it is possible to present

single array elements in a 'lata Scene, we cannot display an enure array, or selected rows and

columns from an array. More complex structures (e.g., LEAP associations), are equally

unmanagt ble in data Scenes.

We have already shown the benefits of a nested Scene structure for program Scenes. A

similar approach could solve these data display problems. First, we would design a format

for the particular kind of code Tier structure to be displayed. Then we would compose

functions to create a text Scene, of a newly generated type, from the code Tier data for that

structure- we might create intermediate Tiers as well.

Finally, we would add to the syntax for data language "programs" the productions:

<equation> ;:■ • <scene id>

<data comment> • <comment>

.!

.i

.1

]

]

.;

::

.i

We would also extend the data display statement syntax to include structure statements such

178

«fei

w*~*^*m**i^m*^**^* mm*- mm*i**™*mm***immmmF ■ u< ■ "i'.1' 'i » •

I
I
I
1
i
:

:

::

Q

:

:;

:;

D
:.

::

1

as "A", where A is a three dimensional array. "AO,*.*]", or, in SAIL, "SON«?i?M. The first

would display the entire array, A The second would show just the rows and columns of

"layer 3" of A. The third statement would present all those item (t) pairs related to each

other by the SON attribute (father/son pairs)

To satisfy one of these requests, the system would create the appropriate structured Scene,

map it to a selected Region, and insert a "»scenejd" entry, referring to this new Scene, into a

selected data Scene We would include with the entry a "data comment", bearing the original

data display statement, to allow the user to identify the reference. Figure 9-4 is an example

of this design for the partial array A[3,;v:0 Examples of possible display formats for SAIL

associative structures abound in the figures of Chapter 8, for examole. Figure 8-6.

We could extend this method to any of the basic, explicit structures of MISLE, of SAIL, or

of virtually any programming language. There is. however, a limit to the comprehensiveness

we could provide this way A u:er, when developing d'ta structures for a specific use. must

use the provisions of the language to create them. The result need not resemblr very closely

the structure as he visualizes it. This is true even for extensible languages, such as ECL.

Lisp70, or Algol68, in which the user tells the system a great deal about the structural

hierarchies he creates- although we might expect to do a good deal better in these cases. In

the past, as now, the burden for creating any custom-tailored external representation for

structures has been on the user himself. In the present COPILOT system oui text Scene

primitives can offer some aid, but a method is still needed for specifying the external

representation of user-defined structures. Ball*, has done some work in this area (see [2]).

as has Hansen (see [24]) Yonke, at Utah, is engaged in a promising study which could

provide the needed facilities

(f) See Appendix B for a description of the LEAP associative features.
179

MM

w^.wm'miwij'fmmmmmmmm^^',f'mwmmf_\j .iiuimiiipi - ■ ■>■ ymmmm^mm^^^^mmmmmmam

A(W]

[l..:0 [2.«] [3.*] [ifi]

[I] 15

t2] 12

[3] -4

15

15

[4] -456 -137 -10 25

.!

.!

.:

.1

■

Q

.1

.;

.1

i

!

Figure 9-4. Possible Scene for Displaying Array Sections

180

IlMii—in—i iiw^MMi i ■ - *■"———— - -- —- ■- -

— ■'"■* >"« mmmmmm ^^mtm^mmmm

I
II
11
I

ii

D
D
D
:;

.:

ü

D
::

::

i

9.C5 Error Messages

We could use the non-preemptive nature of COPILOT to take the sting out of error

messages, translation and execution-time errors detected by the system, or user-detected errors.

1 o see how, we need to consider the nature of errors in a multiple-process environment. The

effect of an error, in general, is to place conditions on the further activities of some process,

but not necessarily to prohibit them entirely. As an example, the detection of a syntactic or

semantic error during program translation need not, fortunately, prohibit further modification

to the Scene text, although it might, for a serious problem, prevent execution of the resultant

compileJ code.

In many cases, then, we can replace the notion of "error" with that of "incompletion". A

'ranslation process can maintain, in an appropriate Scene, a list of things which must be

done in order to remove all the constraints that have been placed on a situation. In our

compiling example, the parser and compiler could maintain in an error Scene a list of the

program Scene locations which contain incomplete or incorrp.i code. Underlying error Scene

Tiers could, as usual, provide structure, linking the error entries to the errant locales in the

program tree This list, besides telling the user what problems remained, could help the

translator to interpret the meaning of new changes in these locations. The important thing

about this technique is its potential kindness, it is non-pre*mptive, and it could provide

substantial aid to the person attempting to rectify the situation.

9.C6 Text Scene Monitoring

We have described the control mechanisms for most of the translators which convert one

COPILOT Tier to another. We have omitted the one which builds the OLDLINE and

NEXTLINE structures of Figure 8-12 in Section 8.E2, when PROG Scenes are modified.

The current method is ad hoc, and not very interesting. We make special tests in the Scene

modification routines, for selected Scene types, and take special action when they are found

While designing translators between other Tiers, we have discovered the efficacy of building

these translators as processes which monitor changes in their respective source Tiers. These

processes awaken at convenient and adequate intervals to perform their specified translations

We subsequently developed the following generalization, whi'h could handle the program

Scene maintenance case above, as well as other useful translations, some of which we will

consider

181

■

wm mmmm 11 ""■'■■ "■ ■■'■'■■•"

In each case, the goal would be to provide a translation algorithm which would maintain the

equivalence, as defined in Section 8.A1. of two or more structures, in order to satisfy a

requirement such as the Visual Fidelity Principle of S<rction 8.A3. Each translator would be

defined as a process with access to the data for its input Tier, and access to a suitable

destination T:?r. Its frequency of operation and translation volume would depend on the

conditions for invoking it. Each translator would specify these conditions by providing two

quantities as attributes of the input Scene type. They would provide an activation

predicate, which would determine the conditions for invoking the translation, and an event

type to cause whenever the predicate succeeded. The Scene modification primitives (e.g.,

Mchaige.char(...)") would evaluate the predicate for a Scene just after modifying the Scene.

This predicate could choose to activate its translator process:

a) On insertion, deletion, or replacement of a character in the Scene.

b) On insertion, deletion, or replacement of a line in the Scene.

c) On insertion of a character at the end of the Scene.

d) On insertion of a line at ihe end of the Scene.

The activation predi^ce could abo contain other Boolean terms, testing such attributes as the

name of the process doing the modification, and perhaps relevant Scene attributes, type,

mapped status etc.

The translation process would then wait (monitor) for an event of the type specified for the

Scene, activ atmg as soon after one occurred as its priority would allow (usually immediately).

It would perform its actions, then suspend, awaiting another event. One proress might

handle more than one event type.

We will try in the following paragraphs to clarify this design with several examples.

The parse and compile processes form our first example, since they already operate this way.

As a second example, we could formalize the ad hoc operations which implement the Token

Tier change structures for PROG and DATA Scenes by a simple process causing, say. a

Token event whenever a type (b) or (a) change were made to a program or data Scene. (*)

I
3
I

I
I

1
:

i
]
:i
3
]
:;

it) Combined with the compiler processes which lurk about the process activation interfaces,
the resulting system would resemble Kay's FLEX system design. Here the monitoring has a
random-access character, whereas Kay's processes operate linearly on their inputs.

182 i

ITMMllll

WWPiMni u ...L«.w.,.,-,^ PPiP """" i i»;'WPipWWBPiBBWP

I
I
I
I
T.

;:

9.C7 Program Comiiiunication

Scene monitoring can also aid user-program communication^. We can categorize the kinds ot

demands for data which programs make of their user: into two general classes. The first

includes initial parameters, file names, !;mit$, modes of operation and the like, which the user

provides to tailor the program for a particular "run". The second Is information actually

processed by the program, e.g., commands and requests, statements to be translated, or data

points to be considered.

Our interactive facilit:»« 'lave ilready eliminated the need for a third kind of user input to

programs: status and variable value requests, and many other debugging operations. We

think we have substantially reduced the need for the first kind (initialization), as well. After

all, the purpose of most such parameter requests is to set internal program variables to the

values provided, or perhaps to retain default values when the user's response so indicates.

Typically the user, in testing his program, will give the same responses again and again, an

operation which becomes something of a ritual after a time. We can eliminate this sort of

request in COPILOT, since the ^scr can set these internal variables using direct assignments

or function calls, often all-wing his selections to remain intact during multiple calls to the

tested program segment. His program can post, in a visible Text Scene, the names and

meanings of variables which it expects the user to set, or can simply create and present an

appropriate data Scene as an Indication of what things he may want to change. That process

can further refuse to proceed until the user has provided satisfactory values for everything.

There will still, however, be occasions for more traditional input to programs (predominantly

the second kind above). In this case, the general mciitoring facilities of the previous section

yield a very Mte solution. The user could, for instance, engage in the following kinds of

dialogue with his program:

• •

I 183

....... - . .^—M. . .

" »■■",",""J"" ''
 "mm" wm'm' u •iiiiiiipuiiiiiiiiiin •*~m ' 'I'" •mm-

HUH

characters into a linear tenniial Scene. It could optionally perform simple editing

operations, allowing for deletion and replacement of incorrectly typed characters, etc.,

depending on the Scene mon.toring frequency (see below). This terminal Scene would serve

merely as an input buffer, and operations upon it would be limited. We would implement it

as a Scene, so that the normal COPILOT operations could be used to view it, react to what

happened to it, and change it.

We could now create a process. Expand, to monitor changes in the terminal Scene, and to

translate them either into direct action, pr into complete statements in the UCP Scene for

execution. By alternating between activation frequencies (c) and (d) of Section 9.C6, the

Expand process could allow the User process the simple editing capabilities, mentioned

above, whenever single-character reaction was unnecessary.

The ultimate behavior of these processes would not be too different from those of Chapter 6,

but the overall organization would become clearer, and potentially more powerful. In fact,

some useful extensions almost suggest themselves:

We need not limit to one the number of processes monitoring a Scene. We could, therefore,

add a Prompting process, at the user's option, to help the novice or infrequent user with his

commands The prompter could complete commands, as described in Section 9.C7, and insert

directives into the terminal Scene, as a guide to the user's responses, or to point out potential

mistakes.

'"

::

i -

The monitor process structure would also make multiple-language systems possible: The

expansion and compiling processes could be replaced in a modulai fashion, so that any

aspect- the terminal "language", or the underlying base language- could be changed, without

altering basic system behavior. (We do not mean to imply that this task would be easy).

We feel that the monitoring technique dominating the preceding sections, though requiring

additional research, would help achieve a desirable system unity.

185

■MIMMMia.

pnii«*»wiMiiiJM.i"ii«iiiMiiiMi, i L . i !■ mi paimiiiiiiiiBitipup pmwiRmnmipi ii i •—wwp^ii^wiBipiiniRiniiiiiBiMii i. \f w^-^mmrnmmmtmi

9.D. SUMMARY

We have presented the COPILOT system design in order to Investigate certain aspects of

Interactive Programming Systems in a multiple processing environment. Our major

approaches have been;

1) The application of multiple processing techniques to the IPS facilities t.iemselves,
leading to a non-preftnptive terminal operation, with convenient access to all relevant
environments, and rapid response to user commands, independent of the activity of his
target processes.

2) The use of (CRT) display devices, to increase the speed with which the system and user
i.iay communicate, and to allow information to be presented "in context", improving the
user's ability both to comprehend complex environments and to specify points of interest
within them.

3) The expression of all user algorithms and terminal commands in terms of a single
programming language, providing a consistent, powerful user interface, and reducing
the number of modes w'.uch determine the meaning of user input. Top-level
abbreviation facilities allow the most common operations to become manipulative, reflex
actions, rather than symbolic commands.

In Chapters 5 through 7 we described the COPILOT rystem, which employ these methods to

meet the criteria of Chapter 2 for achieving a better behavior match.

Finally, in these dosing sections, we have attempted to indicate possible implications of this

work, especially the potential for extension, using our methods as a basis.

186

.!

..

.;

In Chapter 8 we discussed important implementation considerations: the content and

structure of information used to represent fhe system environment at different levels (Tiers),

and the methods for maintaining the necessary relationships (or equivalence) between Tiers.
::

.Ba-ttaMB-MaM>IIB.l_ • — — -

m^g^m-mamm'm'mm > i i im WV^MV« m mu iivnu ■■ i injigi^v^vP«^«. I « wmiimiui

I
I
I
I
I
:

;:

:.

D
i

D
D
::

D
:;

APPENDIX A

SYNTAX CONVENTIONS

This appendix defines the modified BNF syntactic forms used to describe the MISLE

language and the Data layout in Chapter 5. It assumes a general knowledge of BNF, as

defined in [46], for instance.

Nonterminal symbols are expressed as lower case words surrounded by "<" and ">", e.g.,
n<statement>H.

Terminal symbols include punctuation: single characters or "diphthongs" defining themselves;

reserved words: BEGIN, END, ELSE, etc.; and the special nonterminal-like symbols <id>,

<string constants <constant>, and <integer_constant>.

The character '"" causes the following character to be interpreted literally, if it would

otherwise have special meaning

Each rule, or production, is a nonterminal, followed by the definer "::-", then by one or more

alternatives, separated by the "I" character. An alternative is a list of terminal and

nonterminal symbols, or is an option or a repeat alternative.

An option, of the form [<alternative> | <al...> | ... | <al...>] requires that one of the

alternatives be chosen. The repeat alternative takes the form { <alternative> }>:< , and means

that instances of the alternative may appear zero or more times;

<c> ::■ A { , B }■;■ is the same as <c> ::- A | <c> , B

187

-- - ■■ -- "■-"■-

mmmmrnmrmmm^^m^^^mmm. mtmammm^^^^ -—

Expressed in its own language, this syntactic specification is:

Terminals; '['] "{ > '"- NONTERM TERM

where NONTERM and TERM represent nonterminais, as defined above.

.production:» ::- NONTERM '::■ <alternative> { , <alternative>)«

<alternative> ::■ <eiement> j <.element> }:

<element> ::■ TERM | NONTERM | <optiün> | <repeat>

^üption> ::- '[<alternative> {'| <alternative> }■;■']

<repeat> ::■ '{ <alternative> >

u
0
.!

D
D
A

.1

- I

.J

.:

:J
D
j

188

.

- -- - - ■ ^. ^.. .i- -.- -.^»t»-.—..■■ ^ ~*M.

BMHM

was*™-

I
I
I
i
I
I
:

:

::

D
::

:;

D
D
D
Q

::

APPENDIX B

ASSOCIATIVE FACILITIES (LEAP) OF THE SAIL LANGUAGE

We have represented many of our COPILOT structures in terms of the LEAP associative

facilities embedded in SAIL. The structural diagrams of chapters 8 and 9 were presented in

a consistent pictorial style, representing these LEAP structures.

We will first briefly describe SAIL's associative facilities. Following that we will provide a

correspondence between the SAIL structures and our pictorial representations.

The LEAP description has been extracted from [19], with the permission of the other

authors:

SAIL contains an associative data system called LEAP which is used for

symbolic computations, LEAP is a combination of syntax and runtime

subroutines for handling items, sets of items and associations.

Items

An Item is similar to a LISP atom. Items may be declared or obtained during

execution from a pool of items by using the function NEW. Items may be stored

in variables (Itemvars), be members of sets, be elements of lists, or be associated

together to form triples (associations) within the associative store.

Triples

Triples are ordered threejuples of items, and may themselves be considered

items and occur in subsequent associations. They are added to the associative

store by executing MAKE statements. For example;

MAKE use ® planl • taskl;

The three item comp ients of an association are refered to a;, the "attribute", the

"object", anü the vabe" respectively. Associations may be removed from the

store by using ERASE statements such as.

189

_ _ .

mmmmnummmmm m-' mm*^mm*^mmmmi* wmmm^mmmm

ERASE use» plan l • ANY;

Datums

Each item other than those representing associations may have a Datum which

is a scalar or array of any SAIL data-type. The data-type of a DATUM may be

checked during execution. DATUMs are used much as variables are. For

example:

u
Ü

1

.,

J

DATUM(it).-5;

would cause the datum of the item "it" to be replaced with "5"

Sets and Lists

A Set is an unordered collection of distinct items. Items may be inserted into set

variables by "PUT" statements and removed from set variables by "REMOVE"

statements. Set expressions may also be assigned to set variables. Set

exptessions including set constants, set functions, set union, subtraction and

intersection are provided

Sets are deficient in some applications because they are unordered. To remedy

this, SAIL contains a data-type called "list". A List is a (user)-ordered sequence

of items. An item may appear more than once within a list. List operations

include inserting and removing «pecific items from a list variable by indexed

PUT and REMOVE statements. List variables may also be assigned list

expressions, including list constants, list functions, concatenation, and sublists.

Foreach Statements

The standard way of searching the LEAP associative store is the Foreach

Statement. A Foreach Statement specifies a "binding list" of itemvars to be

assigned values (bindings), an "associative context" specifying how the r'.ata

structure is to be searched to provide these bindings, and a statement to be

lepeated for each set of binding values. Consider the following example:

190

.i

.!

i

:i

D

-J" ii niMiifm ■ i ■■ —

I illiiPilliPMOTiHiliiiPR mm in ■ i I—*—* m,mmm,m,,mmm

1
I
I
J

:

:

:

D
ID

Q
::

:

-

i
i
i
i
i

FOR EACH gp,p.c | parent • c ■ p A parent • p • gp DO

MAKE grandparent • c • gp;

In this example the binding-list consists of the itemvars "gp", "p", "c". The

associative context consists of two "elements", "parent • c ■ p". and "parent • p •

gp". The statement to be iterated is the MAKE statement.

Initially all three itemvars are "unbound". That is, they are considered to have

no item value. Since "p" and "c" are unbound, the element "parent • c * p"

represents an associative search. The LEAP interpreter is instructed to look for

triples containing "parent" as their attribute. On finding such a triple, the

interpreter assigns the object and value components to "c" and "p" respectively.

We continue to the next element "parent • p * gp". In this element there is only

one unbound itemvar, "gp" "p" is not unbound even though it is in the binding

list because it was bound by a preceding element. A search is made for triples

with "parent" as their attribute and the current binding for "p" as their object.

If such a triple s found, its value component is bound to "gp" and the MAKE

statement is executed. After execution of the MAKE statement, the LEAP

interpreter will "back up" and attempt to find another bidding for "gp" and then

execute the MAKE statement again. When the inteijjreter fails to find another

binding, it backs up to the preceding element and trys to find other bindings for

"p" and "c". Finally when all triples matching the pattern of the first element

have been tried, the execution of the FOREACH statement is complete.

191

mm^m ' •" ■ * — ^

 mmmm^^** i iimmmmmm^ '"■l' ■' ' " ■■■■«WNI.ll ■

Thus, with a FOREACH statement, one can provide answers to the following kinds of

questions (SON. HARRY, and GEORGE are already bound Items):

SON »HARRY■GEORGE
SON «HARRY • ?

SON•»•GEORGE

'• HARRY^GEORGE

SON•?•?

?•GEORGE•?

?»?iHARRY

Does this relationship exist?

Who is (are) the son(s) of Harry?

Who is (are) the father(s) of George?

What is (are) the relationships?

What are the father/son relationships

etc.

etc. (these aren't too interesting)

Dump associative memory (illegal in SAIL)

We suggested in Section 9C4 that we might use the above question-mark form as a pecial

syntax for display of associations

.1

u

Pnames

We can associate with each item a string value, which we c^ll Its Pname. There can be but

one Pname for each item, and conversely Efficient means are provided for finding one.

given the other. We have used this Pname mechanism in COPILOT to implement the

symbolic access to symbols .1
.1

192

— - - - - ' ■ ■ - — ■^^. ■ -■

mmm ■-'" —" « ™»' in i • ——^ ^^^^•^■"^^»^ I II ■! I I 1

Pictorial Represfntation

In this dissertation an item is normally represented by a small circle, sometimes a small

square Its datum representation, if any. !s appended to the item piture by a small

uplabelled line segment. The datum is drawn in a convenient repre:<?ntation for its data

type, meaning, etc. For example

rpNAME-Y] o a
-• s

DESCRIPTOR

<BEGIN>'

An item's pname, if relevar. appears near the item, enclosed in brackets, as [PNAME - "I"].

Any other names apparently labelling an item is unofficial, included in the diagrams for

descriptive purposes.

The association "ATT»OBJiVAL" is drawn as an arc. lab' led by the attribute ATT.

connecting OBJ and VAL. as:

ATT

OBJ

J

193

—- --■ - - • ---

*m^**~**m*vmm™**mm*immm'mimmmmmiir*~**m*mmmm m^i^^mm^— ■' " «■•

BIBLIOGRAPHY

[I] Rush: Terminal User's Manual. Allan-Babcock Company Inc., 1966

[2] Balier. R.M, EX DAMS: Extendible Debugging and Monitoring System. Proc. 1969

Spring Joint Computer Conference, Vol. 34, pp. 567-580.

13] Bauer, H., Becker, S., and Graham, S., ALGOL W implementation CS 98, Computer

Science Dept., Stanford Univ., 1968.

[4] Berry, D.M., Introduction to Oregano. Proceedings of a Symposium on Data

Structures in Programming Languages. Gainesville, Fla., February 1971.

[5] Bobrow, D.G., Burchfiel, J.D., Murphy, D.L., and Tomlinson, R.S., TENEX, a Paged

Time Sharing System for the PDP-IO. Comm. ACM 15, 3 ^March 1972). 135-143.

[6] —, and Wegbreit, B., A Model and Stack Implementation of Multiple Environments.

BBN Report No. 2334. Cambridge, Mass., March 1972.

L7] Bryan, G.E., and Smith, J.W., Joss Language. Memorandum RM-5377-PR, Tht

RAND Corporation, August 1967

[8] Cheatham. T.I.. and Wegbreit, B.. A Labomory for the Study of Automating

Programming. Proc. AFIPS 1972 Spring Joint Computer Conference, Vol. 40, pp. 11-

22.

[9] Corbato, F.J., CTSS Programmer's Guide, Project MAC, MIT, May 1965.

[10] DecsystemlO Users Handbook. The Digital Equipment Corporation. Maynard Mass..

1972.

I

[II] Algebraic Interpretive Dialogue Conversational Language Manual. The Digital

Equipment Corp., DEC-IC-AJCO-D, Maynard, Mass., 1970.

[12] Depres, R.F, A Command Structure for Interactive Programming. Project Genie

Report No. PI 7. Berkeley, Ca.. March 1969.

194

 mm—. , ■ I \t» k it win Hi

■' IPBHipiiuin i IIIBpiBIVmil itmrvvmrnv« «m

[13] Dunn, T.M., and Morrlssey. JH.. Remote Computing - An Experimental System.

Proc. 1964 Spring Joint Computer Conference, Vol. 25, pp. 413-424

[14] Dahl, O.. Myhrhaug, B, arid Nygaard, K., Common Base Language. Publication No.

S-22, Norsk Regnesentral, Norwegian Computing Center, Oslo, Norway, October 1967.

[15] Engelbart, D.E., and English. W,K., A Research Center for Augmenting Human

Intellect. Proc AFIPS 1968 Fall Joint Computer Conference, Vol. 33, part !. pp 395-

410.

[16] —, —, and Rulifson, J.F., Development of a Multidisplay, Time-Shared Computer

Facility and Computer-Augmented Management Research. Stanford Research Institute

Report, April 1968.

[17] Eastlake, R., ITS 1.5 Reference Manual Project MAC, Mass, inst, of Tech..

Cambridge, Mass, July 1969.

[18] Feldman, JA., and Rovner, P.D., An Algol-Based Associative Language. Comm. ACM

12. 8 (Aug. 1969). 439-449

[19] —, Low. JR., Swmehart, DC. and Taylor. R.H, Recent Developments in SAIL - An

ALGOL-Based Language for Artificial Intelligence. Proc. AFIPS 1972 Fall Joint

Computer Conference. Vol. 41. pp 1193-1202.

[20] —. A Formal Semantics for Computer Oriented Languages (thesis). Carnegie Inst. of

Tech.. Pittsburgh. Pa. 1964.

[21] Fisher. D.. Control Structures for Programming Languages (thesis). Carnegie-Mellon

Univ.. Dept. of Computer Science, May 1970.

[22] Floyd, R., A Descriptive Language for Symbol Manipulation. J. ACM 8. (1961) pp.

579-584

.i

.1

..

]

[23] Ones. D, Compiler Construction for Digital Computers. John Wiley and Sons, Inc.,

New York. 1971.

195
.:

mm —

wmmmm m ■ mmm ** wmmmm \ ■

i
Ü

1

ii

[24] Hansen, W.J.. Creation of Hierarchic Text with a Computer Display (thesis). Stanford

Umv , Dept. of Computer Science, Palo Alto, Ca., May 1971.

[25] Hawker, E. (ed), USERS MANUAL. Computation Center, Stanford Univ.. Stanfjrd.

Ca, 1971

ii

ii

ii

ii

ii

:

:

!

i

[2ti] Iverson, K.E, A I'rograinmiiig Language. John Wiley and Sons, Inc., New York,

1964.

[27] Johnston, JB., The Contour Model of Block Structure Processes. Proceedings of a

Symposium on Data Structures in Programming Languages, Gainesville. Fla., February

1971.

[28] Kay, A.C., The Reactive Engine (thesis). University of 'Jian, Dept. of Computer

Science, Salt Lake City, Utah, August 1969.

[29] Kemeny, J.G., and Kurtz, T.E., BASIC - A Manual for BASIC, the Elementary

Algebraic Language Designed for Use with the Dartmouth Time-Sharing System (third

edition), Dartmouth College, Jan. 1966.

[30] Knuth, D.E., On the Translation of Languages From Left to Right Information and

Control. Vol. 8(1965), 607-639.

[31] —. Tie Art of Computer Programming. Volume I; Fundamental Algorithms.

Addison Wesley. New York, 1968, pp. 305-434.

[32] Lampson, B.W., Dynamic Protection Structures. Proc. 1969 Fall Joint Computer

Conference. Vol. 35, pp. 27-38

[33] —, Time-Sharing System Reference Manual. Document «30.10.30, Dept. of Defense

Contract Si")-185, US. Printing Office, 1966

[34] Leavenworth, B.M., Syntax [macros and Extended Translation. Comm. ACM 9, II

^Nov. 1966), 790-792.

196

■■ — ■ • ■ ■ -- —

wm ii vw^mmm^m^mmm

[35] L.ndstrom, C, Variability in Programming Languages (thesis). Carnegie-Mellon

Umv , Pittsburgh. Pa.. July 1970.

[36] Lock, K, Structuring Programs for Multiprogram Time-Sharing On-Line Applications.

Proc. AFIPS 1965 Spring Joint Computer Conference, Vol. 27.

J

[37] —, Incremental Compilation (unpublished).

[38] McCarthy, J., lowirds a Mathematical Science of Computation. Stanford University,

1962.

[39] , dllj Painter. J. Correctness of a Compiler for Arithmetic Expressions, Stanford

Artificial Intelligence Memo Number 40. April 1966.

[40] , Abrahams, P.. Edwards, D., Hart, T, and Levin, M., Lisp 1.5 Programmer's

Manual MIT Press. Cambridge. Mass., 1962.

..

[41] Miller, R., Response Time in Man-computti Conversational Transactions. Proc.

AFIPS 1968 Fall Joint Computer Conference, Vol. b3, pp. 267-278

[42] Mills, H., Top Down Programming in Large Systems, Debugging Techniques in

Large Systems, R Rustm (ed). Prentice Hall. Englewood Cliffs, New Jersey, 1971.

[43] The Multiplexed Information and Computing Service: Programmers' Manual. Pn^ect

MAC, Mass. Inst. of Tech., Cambridge, Mass., 1971.

..

[44] Mitchell. J.G., The Design and Construction of Flexible and Efficient Interactive

Programming Systems (thesis). Carnegie Mellon Univ.. Dept. of Computer Science,

Pittsburgh, Pa., June 1970

[45] __., Newcomer, J., Perils. A., Van Zoeren, H., and Wile. D., Conversational

Programming - LCC Carnegie-Mellon Univ.. Dept. of Computer Science. Pittsburgh.

Pa, June 1971.

[46] Naur, P. (Ed), Revised report on the Algorithmic Language ALGOL 60. CACM 6, 1

(1963).
197

..

-

41
■' "•" "■■ ' m* HU iniiiliiii iHPiwiiHiiiiiniii —^" «■

I
I
I
I
I
I
I
I
I
I
:

i
i
i
i
i
i

[47] Organick, E.I.. and Cleary, J.G., A Data Structure Model of the B67uü Computer

System. Proc. of a Symposium on Data Structures in Programming Languages.

Gainesville. Fla.. February 1971.

[48] Prebus. J.. TVEDIT Inst. for Math. Stud In the Social Sciences (internnl

documentation). December. 1970.

[■49] Quam. L.H.. and Diffie, B.W.. Lisp 1.6 Reference Manual. Stanford Artificial

Intelligence Laboratory Operating Note 28.5 (Sept. 1970).

[50] Ryan. J.L. Crandall. R L. and Medwedeff. M.. A Conversational System for

Incremental Compilation and Execution in a Time-Sharing Environment. Proc.

AFIPS 1966 Fall Joint Computer Conference. Vol 29. pp. 1-22.

[51] Simon. H.. Reflections on Time Sharing From a User's Point of View. Carnegie

Institute of Technology Research Review. 1967.

[52] Swinehart. DC. and Sproull. R.F.. SA!'-. Stanford Artificial Intelligence Laboratory

Operating Note 57.2. January 1971.

[53] Teitelman. W. Bobrow. DC. Hartley. A.K.. and Murphy. DL.. BBN-Lisp TENEX

Reference Manual. Bolt Beranek and Newman Inc.. Cambridge, Mass.. July 1971.

[54] i PILOT: A Step Toward Man-Computer Symbiosis (thesis). Report TR-32. MIT

Project MAC, 1966

[55] , Automated Programmenng - The Programmer's Assistant. Proc. AFIPS 1972

Fall Joint Computer Conference. Vol. 41. Part 2. pp. 917-922.

[56] Thomas. R. H., A Model for Process Representation and Synthesis (thesis). Report

TR-87. MIT Project MAC. 1971.

[57] Wegbreit. B.. Studies in Extensible Programming Languages (thesis). ESD-TR-70-297,

Harvard University. Cambridge. Mass.. May 1970.

198

-J-"-J" ■ —--

wmm "m mmmmmmwm i 11 mmmmmmmmmmmmmfmmmmmi^fm

[58] , An Overview of the ECL Programming System. Proc. of the International

Symposium on Extensible Languages, S1GPLAN Notices. Vol. 6. Number 12

(December, 1971).

[59] Wegner, P., Data Structure Models for Programming Languages. Proc. of a

Symposium on Data Structures in Programming Languages, Gainesville. Fla.. February

1971.

[60] Van Dam, A., and Rice, D.E.. On-Lme Text Editing: A Survey. Acm Computing

Surveys 3. 3 (Sept. 1970.93-114.

[61] Van Wijngaarden. A.(ed). Mailloux. B.J.. Peck. J E.L., and Koster, C.H.A., Report on

the Algorithmic Language Algol 68. Numerische Mathematik 14:79-218 (1969).

[62] Waite, W.M., A Language-Indep«"ide;it Macro Processor. Comm. ACM 10, 7 (July

1967), 433-440.

[63] Wiederhold, V., PL/ACME. Stanford Univ. Computation Center ACME Facility,

1967

[64] Wirth, N., On Multiprogramming, Machine Coding, and Computer Orgamiation.

Comm. ACM 12. 9 (Sept 1969). 489-498).

D
J

Ü

.:

.:

D

.:

199

■MM ■fin i I ■- - ■

